❶ 納米材料怎麼做
納米材料制備方法:
一、惰性氣體下蒸發凝聚法
通常由具有清潔表面的、粒度為1-100nm的微粒經高壓成形而成,納米陶瓷還需要燒結。國外用上述惰性氣體蒸發和真空原位加壓方法已研製成功多種納米固體材料,包括金屬和合金,陶瓷、離子晶體、非晶態和半導體等納米固體材料。我國也成功的利用此方法製成金屬、半導體、陶瓷等納米材料。
二、化學方法
水熱法,包括水熱沉澱、合成、分解和結晶法,適宜制備納米氧化物;水解法,包括溶膠-凝膠法、溶劑揮發分解法、乳膠法和蒸發分離法等。
三、綜合方法
結合物理氣相法和化學沉積法所形成的制備方法。其他一般還有球磨粉加工、噴射加工等方法。
(1)納米粒制備技術方法圖片擴展閱讀:
納米材料的效應有:
一、體積效應
當納米粒子的尺寸與傳導電子的德布羅意波相當或更小時,周期性的邊界條件將被破壞,磁性、內壓、光吸收、熱阻、化學活性、催化性及熔點等都較普通粒子發生了很大的變化,這就是納米粒子的體積效應。
二、量子尺寸
粒子尺寸下降到一定值時,費米能級接近的電子能級由准連續能級變為分立能級的現象稱為量子尺寸效應。Kubo採用一電子模型求得金屬超微粒子的能級間距為:4Ef/3N。
三、量子隧道
微觀粒子具有貫穿勢壘的能力稱為隧道效應。人們發現一些宏觀量,例如微顆粒的磁化強度、量子相干器件的磁通量以及電荷等亦具有隧道效應,它們可以穿越宏觀系統的勢壘產生變化,故稱為宏觀的量子隧道效應。用此概念可定性解釋超細鎳微粒在低溫下保持超順磁性等。
參考資料來源:網路—納米材料
❷ 如何製取Cu的納米顆粒 至少兩種方法 多多益善
1.物理法物理法主要是通過機械力或外部物理力的作用將兩種或多種材料組合在一起形成復合粉末,其過程不會發生化學變化
2.1化學鍍覆法化學鍍覆法即在含有鍍層成分的金屬鹽溶液中加入某種還原劑.發生氧化還原反應.生成的金屬細粒就沉積在預先加入的彌散顆粒的周圍而得到包覆型金屬基復合粉末。它是製取包覆粉的一種重要方法,具有設備簡單、操作容易、包覆效果好等優點。
❸ 制備納米粉體的方法
納米粒子的制備方法很多,可分為物理方法和化學方法。
1.
物理方法
(1)真空冷凝法
用真空蒸發、加熱、高頻感應等方法使原料氣化或形成等離子體,然後驟冷。其特點純度高、結晶組織好、粒度可控,但技術設備要求高。
(2)物理粉碎法
通過機械粉碎、電火花爆炸等方法得到納米粒子。其特點操作簡單、成本低,但產品純度低,顆粒分布不均勻。
(3)機械球磨法
採用球磨方法,控制適當的條件得到純元素納米粒子、合金納米粒子或復合材料的納米粒子。其特點操作簡單、成本低,但產品純度低,顆粒分布不均勻。
2.
化學方法
(1)氣相沉積法
利用金屬化合物蒸氣的化學反應合成納米材料。其特點產品純度高,粒度分布窄。
(2)沉澱法
把沉澱劑加入到鹽溶液中反應後,將沉澱熱處理得到納米材料。其特點簡單易行,但純度低,顆粒半徑大,適合制備氧化物。
(3)水熱合成法
高溫高壓下在水溶液或蒸汽等流體中合成,再經分離和熱處理得納米粒子。其特點純度高,分散性好、粒度易控制。
(4)溶膠凝膠法
金屬化合物經溶液、溶膠、凝膠而固化,再經低溫熱處理而生成納米粒子。其特點反應物種多,產物顆粒均一,過程易控制,適於氧化物和ⅱ~ⅵ族化合物的制備。
(5)微乳液法
兩種互不相溶的溶劑在表面活性劑的作用下形成乳液,在微泡中經成核、聚結、團聚、熱處理後得納米粒子。其特點粒子的單分散和界面性好,ⅱ~ⅵ族半導體納米粒子多用此法制備
❹ 納米技術的主要內容
納米技術是一門交叉性很強的綜合學科,研究的內容涉及現代科技的廣闊領域。納米科學與技術主要包括:
納米體系物理學、納米化學、納米材料學、納米生物學、納米電子學、納米加工學、納米力學等 。這七個相對獨立又相互滲透的學科和納米材料、納米器件、納米尺度的檢測與表徵這三個研究領域。納米材料的制備和研究是整個納米科技的基礎。其中,納米物理學和納米化學是納米技術的理論基礎,而納米電子學是納米技術最重要的內容。
1993年,第一屆國際納米技術大會(INTC)在美國召開,將納米技術劃分為6大分支:納米物理學、納米生物學、納米化學、納米電子學、納米加工技術和納米計量學,促進了納米技術的發展。由於該技術的特殊性,神奇性和廣泛性,吸引了世界各國的許多優秀科學家紛紛為之努力研究。 納米技術一般指納米級(0.1一100nm)的材料、設計、製造,測量、控制和產品的技術。納米技術主要包括:納米級測量技術:納米級表層物理力學性能的檢測技術:納米級加工技術;納米粒子的制備技術;納米材料;納米生物學技術;納米組裝技術等。
納米技術包含下列四個主要方面:
1、納米材料:當物質到納米尺度以後,大約是在0.1—100納米這個范圍空間,物質的性能就會發生突變,出現特殊性能。 這種既具不同於原來組成的原子、分子,也不同於宏觀的物質的特殊性能構成的材料,即為納米材料。
如果僅僅是尺度達到納米,而沒有特殊性能的材料,也不能叫納米材料。
過去,人們只注意原子、分子或者宇宙空間,常常忽略這個中間領域,而這個領域實際上大量存在於自然界,只是以前沒有認識到這個尺度范圍的性能。第一個真正認識到它的性能並引用納米概念的是日本科學家,他們在20世紀70年代用蒸發法制備超微離子,並通過研究它的性能發現:一個導電、導熱的銅、銀導體做成納米尺度以後,它就失去原來的性質,表現出既不導電、也不導熱。磁性材料也是如此,像鐵鈷合金,把它做成大約20—30納米大小,磁疇就變成單磁疇,它的磁性要比原來高1000倍。80年代中期,人們就正式把這類材料命名為納米材料。
為什麼磁疇變成單磁疇,磁性要比原來提高1000倍呢?這是因為,磁疇中的單個原子排列的並不是很規則,而單原子中間是一個原子核,外則是電子繞其旋轉的電子,這是形成磁性的原因。但是,變成單磁疇後,單個原子排列的很規則,對外顯示了強大磁性。
這一特性,主要用於製造微特電機。如果將技術發展到一定的時候,用於製造磁懸浮,可以製造出速度更快、更穩定、更節約能源的高速度列車。
2、納米動力學:主要是微機械和微電機,或總稱為微型電動機械繫統(MEMS),用於有傳動機械的微型感測器和執行器、光纖通訊系統,特種電子設備、醫療和診斷儀器等.用的是一種類似於集成電器設計和製造的新工藝。特點是部件很小,刻蝕的深度往往要求數十至數百微米,而寬度誤差很小。這種工藝還可用於製作三相電動機,用於超快速離心機或陀螺儀等。在研究方面還要相應地檢測准原子尺度的微變形和微摩擦等。雖然它們目前尚未真正進入納米尺度,但有很大的潛在科學價值和經濟價值。
理論上講:可以使微電機和檢測技術達到納米數量級。
3、納米生物學和納米葯物學:如在雲母表面用納米微粒度的膠體金固定dna的粒子,在二氧化硅表面的叉指形電極做生物分子間互作用的試驗,磷脂和脂肪酸雙層平面生物膜,dna的精細結構等。有了納米技術,還可用自組裝方法在細胞內放入零件或組件使構成新的材料。新的葯物,即使是微米粒子的細粉,也大約有半數不溶於水;但如粒子為納米尺度(即超微粒子),則可溶於水。
納米生物學發展到一定技術時,可以用納米材料製成具有識別能力的納米生物細胞,並可以吸收癌細胞的生物醫葯,注入人體內,可以用於定向殺癌細胞。(上面是老錢加註)
4、納米電子學:包括基於量子效應的納米電子器件、納米結構的光/電性質、納米電子材料的表徵,以及原子操縱和原子組裝等。當前電子技術的趨勢要求器件和系統更小、更快、更冷,更小,是指響應速度要快。更冷是指單個器件的功耗要小。但是更小並非沒有限度。 納米技術是建設者的最後疆界,它的影響將是巨大的。
❺ 有關納米技術的資料
納米技術(nanotechnology),也稱毫微技術,是研究結構尺寸在1納米至100納米范圍內材料的性質和應用的一種技術。1981年掃描隧道顯微鏡發明後,誕生了一門以1到100納米長度為研究分子世界,它的最終目標是直接以原子或分子來構造具有特定功能的產品。因此,納米技術其實就是一種用單個原子、分子製造物質的技術。
納米技術是一門交叉性很強的綜合學科,研究的內容涉及現代科技的廣闊領域。納米科學與技術主要包括:
納米體系物理學、納米化學、納米材料學、納米生物學、納米電子學、納米加工學、納米力學等 。這七個相對獨立又相互滲透的學科和納米材料、納米器件、納米尺度的檢測與表徵這三個研究領域。納米材料的制備和研究是整個納米科技的基礎。其中,納米物理學和納米化學是納米技術的理論基礎,而納米電子學是納米技術最重要的內容。
美國
美國國家科學委員會(National Science Board)於西元2003年底批准"國家納米科技基礎結構網路計劃"(National Science Board Approves Award for a National Nanotechnology Infrastructure Network,簡稱NNIN),將由美國13所大學共同建構支持全國納米科技與教育的網路體系。該計劃為期5年,於公元2004年一月開始執行,將提供整體性的全國性使用技能以支持納米尺度科學工程與技術的研究與教育工作。預估5年間至少投資700億美元的研究經費。計劃目的不僅在提供美國研究人員頂尖的實驗儀器與設備,並能訓練出一批專精於最先進納米科技的研究人員。
1.美國發展最新納米細胞製造技術
納米技術可製造出粒子小於人類血管大小的物體,美國國家標准與科技協會(NIST)指出已研究出一種生產一致的,且能夠自行組合的納米細胞(Nanocells)的方法,以應用在封裝壓縮葯物的治療工作上。這種技術當前可被運用在葯物的包裝技術上,可以更精確地確保葯物的用量,未來將運用在癌症化學治療的相關技術上作更進一步的研究。
納米計劃是公元2005年聯邦跨部會研發預算的主軸,達9.8億美元。
2.DNA檢測晶元的進展
公元2004年一月,美國HP正式對外發表其用來快速進行DNA檢測的納米級晶元。2004年在DNA檢測上采以光學原理為基礎的"基因微晶元法"(DNA microarrays)繁復的檢測步驟,HP團隊改由將此繁復步驟交由電路晶元處理;製作上,DNA檢測晶元的感測元件是一條利用電子束蝕刻法(electron-beam lithography)與反應性離子蝕刻法(reactive-ion etching)所製成粗細約50納米的納米線。然就商業上考量,成果卻過於高昂,因此研究團隊正發展利用較便宜的光學蝕刻法(optical lithography)以製成DNA檢測晶元元件的技術。
3.地下水污染改善之研究
地下水污染是現代被廣泛討論的一項重大議題,現代,美國發表了一種納米微粒(nanoparticles)技術,在此微粒中心為鐵芯(iron)而其外則由多層聚合物加以包覆,其中,內層是由防水性極佳的復合甲基丙烯酸甲脂(poly methl methacrylate;PMMA)包覆,而外層則由親水的sulphonated polystyrene進行包覆。由於親水性外層使納米微粒溶於水,內層防水層則能吸引污染源三氯乙烯(trichloroethylene)。納米微粒中的鐵芯使得三氯乙烯產生分裂,進而使得此項污染源逐漸分裂成無毒的物質。
4.啟動癌症納米科技計劃
為廣泛將納米科技、癌症研究與分子生物醫學相互結合,美國國家癌症中心(NCI)提出了癌症納米科技計劃(Cancer Nanotechnology Plan),並將透過院外計劃、院內計劃與納米科技標准實驗室等三方面進行跨領域工作。計劃設定了六個挑戰:
預防與控制癌症:發展能投遞抗癌葯物及多重抗癌疫苗的納米級設備。
早期發現與蛋白質學:發展植入式早期偵測癌症生物標記的設備,並發展能收集大量生物標記進行大量分析的平台性裝置。
影像診斷:發展可提高解析度到可辨識單獨癌細胞的影像裝置,以及將一個腫瘤內部不同組織來源的細胞加以區分的納米裝置。
多功能治療設備:開發兼具診斷與治療的納米裝置。
癌症照護與生活品質提升:開發改善慢性癌症所引發的疼痛、沮喪、惡心等症狀,並提供理想性投葯裝置。
跨領域訓練:訓練熟悉癌症生物學與納米科技的新一代研究人員。
歐盟
❻ 納米四氧化三鐵粒子的制備方法有哪些
主要是通過對合成工藝的優化處理來有效控制納米粒子的形態,從而獲得具有高穩定性及單分散性的磁性Fe3O4納米粒子。Fe3O4納米粒子制備方法總體上可以分為兩大類,即固相法(干法)和液相法(濕法)。固相法的典型特徵是以固相物質作為反應物,不經過溶液過程而制備出目標產物的方法。近年來,直流電弧等離子體法、熱分解方法是研究較多的納米Fe3O4的固相制備方法;而液相法則以液態體系為反應前驅體系,經過沉澱、脫水和結晶等過程,制備得到納米Fe3O4納米粒子,如微乳液法、水熱法、微乳-水熱法、溶膠-凝膠法、沉澱法(共沉澱、氧化沉澱、還原沉澱等)、有機物模板法、迴流法、水解法等。其中,沉澱法、水(溶劑)熱法、微乳液法是研究較多的制備納米Fe3O4的液相方法。
❼ 什麼是納米粒子,有哪些常見的制備方法
納米粒子是指粒度在1—100nm之間的粒子(納米粒子又稱超細微粒)。屬於膠體粒子大小的范疇。它們處於原子簇和宏觀物體之間的過度區,處於微觀體系和宏觀體系之間,是由數目不多的原子或分子組成的集團,因此它們既非典型的微觀系統亦非典型的宏觀系統。可以預見,納米粒子應具有一些新異的物理化學特性。 納米粒子區別於宏觀物體結構的特點是,它表面積占很大比重,而表面原子既無長程序又無短程序的非晶層。可以認為納米粒子表面原子的狀態更接近氣態,而粒子內部的原子可能呈有序的排列。即使如此,由於粒徑小,表面曲率大,內部產生很高的Gilibs壓力,能導致內部結構的某種變形。納米粒子的這種結構特徵使它具有下列四個方面的效應。 1.體積效應 2.表面效應 3.量子尺寸效應 4.宏觀量子隧道效應
❽ 納米技術可以應用在哪些方面啊
納米技術可以變得更加健康,可以讓葯物變得更加有力,幫助我們,而且癌症這些危險的病狀在納米技術面前也不是問題,還可以讓復雜的事情變得簡單。
生物醫葯學:利用納米顆粒技術設計制備具有多種響應功能或者靶向的葯物(基因)遞送載體,發展葯物新劑型及新葯物
再生醫學:發展引導組織再生和促進組織/材料界面融合的納米結構材料,用於組織修復與替代的永久性植入物表面塗層、引導組織再生支架、結構性永久植入物、植入性治療與監測用感測器等。
外科手術輔助:基於納米光學和納米電子學技術發展智能儀器設備、手術機器人等、診斷工具:基於納米流體和納米加工技術,發展基因檢驗、超靈敏標記與檢測技術、高通量和多重分析技術等
醫學影像:基於納米顆粒技術的新型造影劑、靶向標記技術、理解基本的生命過程:基於原子力顯微鏡、隧道掃描顯微鏡等納米力學和光學技術,在分子或原子層面,研究生命的過程。
(8)納米粒制備技術方法圖片擴展閱讀
成像技術只能檢測到癌症在組織上造成的可見的變化,而這個時候已經有數千的癌細胞生成並且可能會轉移。
即使是已經可以看到腫瘤了,由於腫瘤本身的類別(惡性還是良性)和特徵,要確定有效的治療方法也還必須通過活組織檢查。如果對癌性細胞或者癌變前細胞以某種方式進行標記,使用傳統設備即可檢測出來則更有利於癌症的診斷。
要實現這一目標有兩個必要條件:某技術能夠特定識別癌性細胞且能夠讓被識別的癌性細胞可見。納米技術能夠滿足這兩點。例如,在金屬氧化物表面塗覆可特異識別癌性細胞表面超表達的受體的抗體。
由於金屬氧化物在核磁共振成像(MRI)或計算機斷層掃描(CT)下發出高對比度信號,因此一旦進入體內後,這些金屬氧化物納米顆粒表面的抗體選擇性地與癌性細胞結合,使檢測儀器可以有效地識別出癌性細胞。
同樣地,金納米粒也可以用於增強在內窺鏡技術中的光散射。納米技術能夠將識別癌症類別及不同發展階段的分子標記可視化,讓醫生能夠通過傳統的成像技術看到原本檢測不到的細胞和分子。