導航:首頁 > 使用方法 > 細胞工程常用的組織分離方法

細胞工程常用的組織分離方法

發布時間:2022-08-09 02:27:09

❶ 細胞分離

體外培養(in vitro culture)包括:組織培養(tissue culture)、細胞培養(cell culture)、器官培養(organ culture)。顧名思義,就是將活體結構成分(如活體組織、活體細胞或者活體器官等)從體內或其寄生體內取出,放在類似於體內生存環境的體外環境中,讓其生長發育的方法。廣義組織培養與體外培養同義。

體外培養已經歷了約一百年的發展歷史,但發展初期進程比較緩慢,沒有引起很多學者的重視。直到上世紀50年代後期,體外培養技術才廣泛應用於生物學研究的各個領域,使這項技術得到飛速發展。現在體外培養已成為細胞工程、基因工程、抗體工程的重要組成部分。

細胞培養指從生物機體取出部分組織分散成單個細胞或直接從機體取出單個細胞,也可把體外培養細胞分散成單個細胞在體外條件下培養,細胞能繼續存活與增殖。培養過程中細胞不再形成組織。

發展與完善細胞培養技術圍繞防止污染、改進培養方法、設計新型培養容器、設計不同的培養液等幾個方面進行。

1885年Roux溫生理鹽水培育雞胚組織;

1903年Jolly,1906年Beebe等發明了蓋片懸滴培養;

1907年Harrison培養蛙胚神經成功,開始創建蓋片凹玻璃懸滴培養法;
1910、1912年Carrel採用無菌操作、更新培養基、傳代,完善了懸滴培養法;
1924年Maximow採用雙蓋片懸滴培養法;
1923年Carral設計創立了卡氏瓶培養法,用此法可根據需要隨時更換培養液,既有利於組織不斷生長,又可以運用不同種類的營養液培養不同的細胞,極大地推動了當時組織培養研究。

Earle等加以改進,使大量細胞能直接生長於玻璃瓶壁上,培養了正常細胞與腫瘤細胞的細胞株。至此大多數研究人員都採用培養瓶培養細胞。

組織培養從二十世紀40年代起迅速發展,在培養容器、培養基和培養技術等方面出現了很多革新。

在培養容器方面, 由簡單的用試管、旋轉管培養,發展到多種培養瓶培養,近年來,塑料瓶、皿、多孔培養板的使用已日趨普遍。

在培養基方面,從50年代初,Parke、Eagle等設計出合成培養基後,從純天然培養基到合成培養基、從雞胚浸出液發展到動物血清(促細胞生長物),直至60年代設計出無血清培養基。

首先反映在設計不同種類的緩沖鹽溶液,以用來培養不同的細胞和洗滌細胞。Earle在1948年設計了含有碳酸氫鈉等鹽類的Earle氏鹽溶液,Hank』s在1949年設計了Hank』s氏鹽溶液。

在培養技術方法方面,革新進展更為迅猛,Earle、Dulbecco等於1943年創建單層細胞培養法,首建長期傳代的L-細胞系。
1948年Sanford創建單細胞分離培養法,獲L-細胞純系。
1951年Gey首建人腫瘤細胞——Hela細胞系。
1961年Hayflick首建人二倍體細胞系25種,開辟了應用新方向。
從50年代末開始,組織培養技術應用進入了一個繁盛的階段,廣泛應用於生物學和醫學研究各個領域。
誘變建立遺傳缺陷細胞株、雜交瘤技術制備單抗、發展細胞大量培養技術、利用重組技術構建工程細胞株,已成為生物工程的重要生產手段。

在連續灌注培養工藝方面,美國Ohashi,Ryo等人2001年報道採用2L一次性生物反應器灌注培養雜交瘤細胞生產單克隆抗體,以Becton Dickenson Cell Mab+10%胎牛血清+1%聚醚F-68為培養基,最高活細胞密度超過1×107cells/ml;2001年瑞士Heine, Holger等人用帶超聲細胞分離器(UCS)的連續灌注攪拌罐生物反應器培養鼠雜交瘤細胞生產單克隆抗體,穩態培養時活細胞密度超過2×107cells/ml;2004年德國Thomas等人在1L攪拌罐生物反應器中培養rCHO細胞生產人MUC-1糖蛋白,採取葡萄糖濃度限制的高產率灌注工藝減少有害代謝物,代謝轉向TCA循環增加,活細胞密度保持在(1~2)×107cells/ml。

在流加懸浮培養工藝方面,美國麻省理工Xie Liang等人2000年報道在2L生物反應器中流加培養雜交瘤細胞,通過營養控制降低氨和乳酸的比生成速率,補充培養基包括營養成分、胎牛血清和痕量金屬,最大活細胞密度達到1.7×107cells/mL。

細胞分離就是通過物理、生物、化學的方法,將生物組織分離為單細胞分散系的過程。
一般動物組織經培養,其細胞會延培養基表面平鋪生長,自行達到細胞分離的目的。還可用膠原酶處理分離。
而植物組織培養後會形成愈傷組織,要用化學方法才能獲得單個細胞(一般用纖維素酶)。

❷ 細胞工程的研究對象及方法有哪些

細胞工程是生物工程的一個重要方面。總的來說,它是應用細胞生物學和分子生物學的理論和方法,按照人們的設計藍圖,進行在細胞水平上的遺傳操作及進行大規模的細胞和組織培養。當前細胞工程所涉及的主要技術領域有細胞培養、細胞融合、細胞拆合、染色體操作及基因轉移等方面。通過細胞工程可以生產有用的生物產品或培養有價值的植株,並可以產生新的物種或品系。
細胞工程(Cell engineering):

是指應用現代細胞生物學、發育生物學、遺傳學和分子生物學的理論與方法,按照人們的需要和設計,在細胞水平上的遺傳操作,重組細胞結構和內含物,以改變生物的結構和功能,即通過細胞融合、核質移植、染色體或基因移植以及組織和細胞培養等方法,快速繁殖和培養出人們所需要的新物種的生物工程技術。

細胞工程與基因工程一起代表著生物技術最新的發展前沿,伴隨著試管植物、試管動物、轉基因生物反應器等相繼問世,細胞工程在生命科學、農業、醫葯、食品、環境保護等領域發揮著越來越重要的作用。

21世紀合成生物學的發展,採用計算機輔助設計、DNA或基因合成技術,人工設計細胞的信號傳導與基因表達調控網路,乃至整個基因組與細胞的人工設計與合成,從而刷新了基因工程與細胞工程技術,並將帶來生物計算機、細胞制葯廠、生物煉制石油等技術與產業革命。

❸ 生物技術的細胞工程

關於細胞工程的定義和范圍還沒有一個統一的說法,一般認為,細胞工程是根據細胞生物學和分子生物學原理,採用細胞培養技術,在細胞水平進行的遺傳操作。細胞工程大體可分染色體工程、細胞質工程和細胞融合工程。
1、細胞培養技術
細胞培養技術是細胞工程的基礎技術。所謂細胞培養,就是將生物有機體的某一部分組織取出一小塊,進行培養,使之生長、分裂的技術。細胞培養又叫組織培養。近二十年來細胞生物學的一些重要理論研究的進展,例如細胞全能性的揭示,細胞周期及其調控,癌變機理與細胞衰老的研究,基因表達與調控等,都是與細胞培養技術分不開的。
體外細胞培養中,供給離開整體的動植物細胞所需營養的是培養基,培養基中除了含有豐富的營養物質外,一般還含有刺激細胞生長和發育的一些微量物質。培養基一般有固態和液態兩種,它必須經滅菌處理後才可使用。此外,溫度、光照、振盪頻率等也都是影響培養的重要條件。
植物細胞與組織培養的基本過程包括如下幾個步驟:
第一步,從健康植株的特定部位或組織,如根、莖、葉、花、果實、花粉等,選擇用於培養的起始材料(外植體)。
第二步,用一定的化學葯劑(最常用的有次氯酸鈉、升汞和酒精等)對外植體表面消毒,建立無菌培養體系。
第三步,形成愈傷組織和器官,由愈傷組織再分化出芽並可進一步誘導形成小植株。
動物細胞培養有兩種方式。一種叫非貼壁培養:也就是細胞在培養過程中不貼壁, 條件較為復雜, 難度也大一些,但是容易同時獲得大量的培養細胞。這種方法一般用於淋巴細胞、腫瘤細胞和一些轉化細胞的培養。另一種培養方式是貼壁培養:也稱為細胞貼壁,貼壁後的細胞呈單層生長,所以此法又叫單層細胞培養。大多數哺乳動物細胞的培養必須採用這種方法。
動物細胞不能採用離體培養,以人的皮膚細胞培養為例,動物細胞培養的主要步驟如下:
第一步,在無菌條件下,從健康動物體內取出適量組織,剪切成小薄片。
第二步,加入適宜濃度的酶與輔助物質進行消化作用使細胞分散。
第三步,將分散的細胞進行洗滌並純化後,以適宜的濃度加在培養基中,37℃下培養,並適時進行傳代。
在細胞培養中,我們經常使用一個詞——克隆。克隆一詞是由英文clone音譯而來,指無性繁殖以及由無性繁殖而得到的細胞群體或生物群體。細胞克隆是指細胞的一個無性繁殖系。自然界早已存在天然的克隆,例如,同卵雙胞胎實際上就是一種克隆。
基因工程中,還有稱為分子克隆(molecular cloning)的,是科恩等在 1973年提出的。分子克隆發生在DNA分子水平上,是指從一種細胞中把某種基因提取出來作為外源基因,在體外與載體連接,再將其引入另一受體細胞自主復制而得到的DNA分子無性系。
2、細胞核移植技術
由於克隆是無性繁殖,所以同一克隆內所有成員的遺傳構成是完全相同的,這樣有利於忠實地保持原有品種的優良特性。人們開始探索用人工的方法來進行高等動物克隆。哺乳動物克隆的方法主要有胚胎分割和細胞核移植兩種。其中,細胞核移植是發展較晚但富有潛力的一門新技術。
細胞核移植技術屬於細胞質工程。所謂細胞核移植技術,是指用機械的辦法把一個被稱為「供體細胞」的細胞核(含遺傳物質)移入另一個除去了細胞核被稱為「受體」的細胞中,然後這一重組細胞進一步發育、分化。核移植的原理是基於動物細胞的細胞核的全能性。
採用細胞核移植技術克隆動物的設想,最初由一位德國胚胎學家在1938年提出。從1952年起,科學家們首先採用兩棲類動物開展細胞核移植克隆實驗,先後獲得了蝌蚪和成體蛙。1963年,我國童第周教授領導的科研組,以金魚等為材料,研究了魚類胚胎細胞核移植技術,獲得成功。到1995年為止,在主要的哺乳動物中,胚胎細胞核移植都獲得成功,但成體動物已分化細胞的核移植一直未能取得成功。
1996年,英國愛丁堡羅斯林研究所,伊恩?維爾穆特研究小組成功地利用細胞核移植的方法培養出一隻克隆羊——多利,這是世界上首次利用成年哺乳動物的體細胞進行細胞核移植而培養出的克隆動物。。
在核移植中,並不是所有的細胞都可以作為核供體。作為供體的細胞有兩種:一種是胚胎細胞,一種是某些體細胞。
研究表明,卵細胞、卵母細胞和受精卵細胞都是合適的受體細胞。
2000年6月,我國西北農林科技大學利用成年山羊體細胞克隆出兩只「克隆羊」,這表明我國科學家也掌握了哺乳動物體細胞核移植的尖端技術。
核移植的研究,不僅在探明動物細胞核的全能性、細胞核與細胞質關系等重要理論問題方面具有重要的科學價值,而且在畜牧業生產中有著非常重要的經濟價值和應用前景。
3、細胞融合技術
細胞融合技術屬於細胞融合工程。細胞融合技術是一種新的獲得雜交細胞以改變細胞性能的技術,它是指在離體條件下,利用融合誘導劑,把同種或不同物種的體細胞人為地融合,形成雜合細胞的過程。細胞融合術是細胞遺傳學、細胞免疫學、病毒學、腫瘤學等研究的一種重要手段
動物細胞融合的主要步驟是:
第一步,獲取親本細胞。將取樣的組織用胰蛋白酶或機械方法分離細胞,分別進行貼壁培養或懸浮培養。
第二步,誘導融合。把兩種親本細胞置於同一培養液中,進行細胞融合。動物細胞的融合過程一般是:兩個細胞緊密接觸→細胞膜合並→細胞間出現通道或細胞橋→細胞橋數增加擴大通道面積→兩細胞融合為一體。
植物細胞融合的主要步驟是:
第一步,制備親本原生質體。
第二步,誘導融合。
微生物細胞的融合步驟與植物細胞融合基本相同。
從20世紀70年代開始,已經有許多種細胞融合成功,有植物間、動物間、動植物間甚至人體細胞與動植物間的成功融合的新的雜交植物,如 「西紅柿馬鈴薯」、「擬南芥油菜」和「蘑菇白菜」等。(圖4-36是利用細胞融合培育雜交植物)從目前的技術水平來看,人們還不能把許多遠緣的細胞融合後培養成雜種個體,尤其是動物細胞難度更大。
酶工程、發酵工程與蛋白質工程
1、酶工程酶工程是指利用酶、細胞或細胞器等具有的特異催化功能,藉助生物反應裝置和通過一定的工藝手段生產出人類所需要的產品。它是酶學理論與化工技術相結合而形成的一種新技術。
酶工程,可以分為兩部分。一部分是如何生產酶,一部分是如何應用酶。
酶的生產大致經歷了四個發展階段。最初從動物內臟中提取酶,隨著酶工程的進展,人們利用大量培養微生物來獲取酶,基因基因工程誕生後,通過基因重組來改造產酶的微生物,近些年來,酶工程又出現了一個新的熱門課題,那就是人工合成新酶,也就是人工酶。
酶在使用中也存在著一些缺點。如遇到高溫、強酸、強鹼時就會失去活性,成本高,價錢貴。實際應用中酶只能使用一次等。利用酶的固定化可以解決這些問題,它被稱為是酶工程的中心。
60年代初,科學家發現,許多酶經過固定化以後,活性絲毫未減,穩定性反而有了提高。這一發現是酶的推廣應用的轉折點,也是酶工程發展的轉折點。如今,酶的固定化技術日新月異。它表現在兩方面:
一是固定的方法。目前固定的方法有四大類:吸附法、共價鍵合法、交聯法和包埋法。
二是被固定下來的酶,具有多種酶,能催化一系列的反應。
與自然酶相比,固定化酶和固定化細胞具有明顯的優點:
1、可以做成各種形狀,如顆粒狀、管狀、膜狀,裝在反應槽中,便於取出,便於連續、反復使用;
2、穩定性提高,不易失去活性,使用壽命延長;
3、便於自動化操作,實現用電腦控制的連續生產。
如今已有數十個國家採用固定化酶和固定化細胞進行工業生產,產品包括酒精、啤酒、各種氨基酸、各種有機酸以及葯品等等。
2、發酵工程
現代的發酵工程。又叫微生物工程,指採用現代生物工程技術手段,利用微生物的某些特定的功能,為人類生產有用的產品,或直接把微生物應用於工業生產過程。
發酵是微生物特有的作用,幾千年前就已被人類認識並且用來製造酒、麵包等食品。20世紀20年代主要是以酒精發酵、甘油發酵和丙醇發酵等為主。20世紀40年代中期美國抗菌素工業興起,大規模生產青黴素以及日本谷氨酸鹽(味精)發酵成功,大大推動了發酵工業的發展。
20世紀70年代,基因重組技術、細胞融合等生物工程技術的飛速發展,發酵工業進入現代發酵工程的階段。不但生產酒精類飲料、醋酸和麵包,而且生產胰島素、干擾素、生長激素、抗生素和疫苗等多種醫療保健葯物,生產天然殺蟲劑、細菌肥料和微生物除草劑等農用生產資料,在化學工業上生產氨基酸、香料、生物高分子、酶、維生素和單細胞蛋白等。
從廣義上講,發酵工程由三部分組成:上游工程,發酵工程和下游工程。其中上游工程包括優良種株的選育,最適發酵條件(pH、溫度、溶解氧和營養組成)的確定,營養物的准備等。發酵工程主要指在最適發酵條件下,發酵罐中大量培養細胞和生產代謝產物的工藝技術。下游工程指從發酵液中分離和純化產品的技術。
發酵工程的步驟一般包括:
第一步,菌種的選育。
第二步,培養基的制備和滅菌。
第三步,擴大培養和接種。
第四步,發酵過程。
第五步,分離提純。
發酵工程在醫葯工業、食品工業、農業、冶金工業、環境保護等許多領域得到廣泛應用。
3、蛋白質工程
在現代生物技術中,蛋白質工程是在20世紀80年代初期出現的。蛋白質工程是指在深入了解蛋白質空間結構以及結構與功能的關系,並在掌握基因操作技術的基礎上,用人工合成生產自然界原來沒有的、具有新的結構與功能的、對人類生活有用的蛋白質分子。
蛋白質工程的類型主要有兩種:
一是從頭設計,即完全按照人的意志設計合成蛋白質。從頭設計是蛋白質工程中最有意義也是最困難的操作類型,目前技術尚不成熟,已經合成的蛋白質只是一些很小的短肽。
二是定位突變與局部修飾,即在已有的蛋白質基礎上,只進行局部的修飾。這種通過造成一個或幾個鹼基定位突變,以達到修飾蛋白質分子結構目的的技術,稱為基因定位突變技術。
蛋白質工程的基本程序是:首先要測定蛋白質中氨基酸的順序,測定和預測蛋白質的空間結構,建立蛋白質的空間結構模型,然後提出對蛋白質的加工和改造的設想,通過基因定位突變和其它方法獲得需要的新蛋白質的基因,進而進行蛋白質合成。(圖4-37)
由於蛋白質工程是在基因工程的基礎上發展起來的,在技術方面有很多同基因工程技術相似的地方,因此蛋白質工程也被稱為第二代基因工程。
蛋白質工程為改造蛋白質的結構和功能找到了新途徑,而且還預示人類能設計和創造自然界不存在的優良蛋白質的可能性,從而具有潛在的巨大社會效益和經濟效益。

❹ 一、簡述幹細胞分離純化的主要方法 二、簡述幹細胞體內體外的檢測方法

ES細胞的分離方法:
A: 免疫學方法
利用ES細胞所具有的特殊標記,藉助熒光細胞分離器從單細胞懸液分離ES細胞。
B:免疫外科學方法
利用囊胚腔對抗體的不通透性,通過抗體與補體結合後所產生的對其它細胞的毒性殺傷作用,除去滋養層細胞,保留ES細胞。
C:組織培養法
胚胎用外源激素處理後,所分化出的胚泡進行體外培養,其中的ES細胞垂直向上生長,呈卵圓柱狀,可顯微鏡下檢出另培養。
D:顯微外科學法
用顯微操作系統直接從胚泡中吸取ES細胞。

❺ 兩種貼壁細胞共同培養後怎樣分離

兩種貼壁細胞共同培養後怎樣分離
細胞培養(cell culture)細胞培養的含義,簡單地說即是把來自機體的組織經分散成為單個細胞,放在類似於體內的體外環境中生存,使其不斷生長、繁殖或傳代,藉以觀察細胞的生長、繁殖、衰老等生命現象。還可以利用細胞進行細胞工程與細胞癌變等重大問題的研究。細胞培養也是研究病毒與研製疫苗的基礎技術。因此細胞培養技術在遺傳學、免疫學、腫瘤學、病毒學、分子生物學等領域已得到廣泛的應用。細胞培養分為原代培養和傳代培養,下面介紹原代培養和傳代培養的基本概念。

原代培養 通過組織塊直接長出單層細胞或用酶或機械方法將組織分散成單個細胞開始培養,在首次傳代前的培養可認為是原代培養。原代培養最大的優點是,組織和細胞剛剛離體,生物性狀尚未發生很大變化,在一定程度上能反映體內狀態。特別是在細胞培養會合時,原代培養的某些特殊功能表達尤為強烈。在這樣的培養階段能更好地顯示與親體組織緊密結合的形態學特徵。在供體來源充分、生物學條件穩定的情況下,採用原代培養做各種實驗,如葯物測試、細胞分化等,效果很好。但應注意,原代培養組織是由多種細胞成分組成的,比較復雜。即使全為同一類型的細胞,如上皮細胞或成纖維細胞,也仍具有異質性,在分析細胞生物學特性時比較困難。其次,由於供體的個體差異及其他一些原因,細胞群生長效果有時也不一致。

原代培養也是建立各種細胞系(株)必經的階段。假如原代培養能夠維持幾小時甚至更長,即可進行進一步篩選。有的細胞具有繼續增殖能力,有的細胞類型只是存活而不增殖,而另外一些細胞只是在特殊條件下應用而不存活,因而細胞類型的分布將會改變。在單層培養的情況下,瓶底全部鋪滿細胞,達到會合以後,對密度有依賴性的細胞則逐漸減少生長,而失去密度依賴敏感性的細胞則生長增加,天然或自發轉化的細胞則過度生長。藉助於頻繁傳代,保持細胞低密度生長,有利於保存細胞的正常表型(如小鼠成纖維細胞)。而自發轉化則傾向於高細胞密度的過度生長。

傳代培養 原代培養形成的單層細胞匯合以後,需要進行分離培養,否則細胞會因生成空間不足或由於細胞密度過大引起營養枯竭,都將影響細胞的生長,這一程序常稱為傳代或傳代培養。原代培養在首次傳代時即為細胞系,能連續培養下去的為連續細胞系;不能連續培養的為有限細胞系。通常,傳代培養是指擴大培養,也就是將一份細胞一分為二或者一分為三進行培養等。但嚴格說來,不論稀釋與否,將細胞從一個培養瓶轉移或移植到另一個培養瓶即稱為傳代或傳代培養。可以理解,在任何時候,細胞從一個瓶子接種到另一個瓶子時總會丟失一部分,因此,在客觀上細胞必定有所稀釋。

傳代代數這一概念常常容易同「增殖代數」相混淆。細胞「一代」一詞僅指從細胞接種到分離再培養時的一段時間。如某一細胞系為第153代,即指該細胞系已傳代153次。它與細胞「增殖代數」(細胞世代或倍增)不同,在細胞一代中,細胞約能倍增3~6次。由此可見,細胞代數與增殖代數相關,確切的代數則依賴於細胞株和培養條件的不同而異。但構成一個細胞系的生長條件必須是同樣的,因而細胞系應該表達近似的增殖代數或倍增代數。

❻ 細胞生物學中常用的實驗技術或者方法

第二節 細胞生物學實驗方法與技術
當前細胞生物學與醫葯保健事業聯系的較為緊密的熱點問題主要有以下幾種:1)真核細胞基因結構及其表達調控;2)細胞膜、膜系、受體與信號傳遞研究;3)細胞生長、分化、衰老、癌變、死亡,尤其是程序性細胞死亡的研究;4) 細胞工程,包括基因工程及體細胞核移植的研究。
一、細胞培養常用方法
1、細胞原代培養(primay culture) 又稱初代培養,即直接從機體取下細胞、組織、或器官、讓他們在體外維持與生長。原代細胞的特點是細胞或組織剛離開機體,他們的生物狀態尚未發生很大的改變,一定程度上可反映他們在體內的狀態,表現出來源組織或細胞的特性,因此用於葯物實驗尤其是葯物對細胞活動、結構、代謝、有無毒性或殺傷作用等研究是極好工具。常用的原代培養方法有組織快培養法及消化培養法。前者方法簡單,細胞也較易生長,尤其是培養心肌有時能觀察到心肌組織塊的搏動。細胞從組織塊外長並鋪滿培養皿或培養瓶後即可進行傳代。2、細胞的傳代培養 當細胞生長至單層匯合時,便需要進行分離培養否則會因無繁殖空間、營養耗竭而影響生長,甚至整片細胞脫離基質懸浮起來直至死亡。為此當細胞達到一定密度時必須傳代或再次培養,目的是藉此繁殖更多的細胞,另一方面是防止細胞的退化死亡。
二、器官培養方法
器官培養(organ culture)是指用特殊的裝置使器官、器官原基或它們的一部分在體外存活,幷保持其原有的結構和功能。器官培養可模擬體內的三維結構,用於觀察組織間的相互反應、組織與細胞的分化以及外界因子包括葯物對組織細胞的作用。
器官培養方法很多,最經典的方法即表玻皿器官培養法;一種最常用的方法是不銹鋼金屬網格法及Wolff培養法和擴散盒培養法,實驗者可根據情況選擇採用。
三、放射自顯影術測定
放射自顯影術(autoradiography)是利用放射性同位素電離輻射對核子乳膠的感光作用,顯示標本或樣品中放射物的分布、定量以及定位的方法。放射性同位素能在緊密接觸的感光乳膠中記錄下它存在的部位和強度,准確顯示出形態與功能的定位關系。現已可將放射自顯影術與電鏡以及生物分子結合起來。不但可以研究放射性物質在組織和細胞內的分布代謝,而且可以揭示核酸合成及其損傷等改變,目前已在生命科學各領域被廣泛應用。
四、染色體分析技術
染色質或染色體是遺傳物質在細胞水平的形態特徵。前者是指當細胞處於合成期時遺傳物質經鹼性染料著色後,呈現出細絲狀彌漫結構;當細胞進入分裂期時,染色質細絲高度螺旋化凝聚為形態有特徵的染色體。特別是在分裂中期,復制後的染色體達到最高程度的凝聚,稱為中期染色,是進行染色體形態觀察分析的最佳時期。染色體分析應用領域越來越廣,主要用於以下幾方面:1)為臨床診斷提供新手段;2)研究不育和習慣性流產發生的遺傳基礎;3) 通過檢查胎兒的染色體,預防有染色體異常患兒出生(先天愚型);4)根據染色體的多肽性進行親子和異型配子的起源研究;結合DNA重組技術可以將基因定位於染色體的具體區帶上。
五、電鏡技術
早在1940年,英國劍橋大學首先試製成功掃描電子顯微鏡,但因解析度低無實用價值。1965年英國劍橋科學儀器有限公司開始生產出商品掃描電鏡,其以顯著優點廣泛用於生物學、醫學、物理學、化學、電子學及勘探、冶金、國防、公安、機械與輕工業等諸多領域,並已成為非常有用的研究工具。

❼ 為了進行細胞培養,首先要從生物體取得細胞,目前獲取細胞的方法有兩種,分離法

實驗:細胞培養

1.實驗目的

初步掌握哺乳動物細胞的原代培養與傳代培養的基本操作過程,為生物工程在醫學上的應用打下基礎。

實驗原理 2.

從生物體中取出某種組織或細胞,模擬體內生理條件,在人工培養條件下使其生存、生長、繁殖或傳代,這一過程稱為細胞培養。細胞培養技術的最大優點是使我們得以直接觀察活細胞,並在有控制的環境條件下進行實驗,避免了體內實驗時的許多復雜因素,還可以與體內實驗互為補充,可同時提供大量生物性狀相同的細胞作為研究對象,耗費少,比較經濟,因此成為生物學研究的重要手段。近年來,在體細胞遺傳、分化、胚胎發生、腫瘤發生、免疫學、細胞工程、放射生物學以及老年學等一系列的研究領域中得到廣泛的應用,並取得了豐碩的成果。

細胞培養可分為原代培養和傳代(繼代)培養。直接從體內獲取的組織細胞進行首次培養為原代培養;當原代培養的細胞增殖達到一定密度後,則需要做再培養,即將培養的細胞分散後,從一個容器以1:2或其他比率轉移到另一個或幾個容器中擴大培養,為傳代培養,傳代培養的累積次數就是細胞的代數。

細胞培養是一種程序復雜、要求條件多而嚴格的實驗性工作。所有離體細胞的生長都受溫度、滲透壓、pH值、無機鹽影響,消毒、配液等均有嚴格的規范和要求,特別是無菌操作是細胞培養成敗的關鍵。

❽ 核質分離原理

核質分離原理:細胞核與細胞質分離。

在細胞工程中,核移植實驗就是將細胞核與細胞質進行分離,然後與另外的細胞質或細胞核進行融合,構建雜交細胞。細胞核質分離是根據細胞膜和核膜裂解的難易程度用不同強度的裂解液裂解細胞,達到細胞質和細胞核物質分離的效果。

細胞核作為一個功能單位,完整地保存遺傳物質,並指導RNA合成,進而表達出相應的蛋白,在一定程度上細胞核控制著細胞的代謝、生長、分化和繁殖活動。因此細胞核的分離是研究基因表達及細胞核形態結構的首要步驟。不同組織來源的細胞經勻漿後,可用分級離心等方法將細胞核進行分離純化。

實驗要點:

1、為了得到較好的結果,外周血單個核細胞分離後應立即使用。

2、所有操作過程應在18-20℃中進行。

3、仔細覆蓋各種Percoll分層液,避免破壞其界面。

4、洗滌分離細胞3次,以除去殘存的Percoll分層液和血小板。

5、如果所制備的細胞仍不純,可使用包被有抗CD2、抗CD3、抗CD19抗體分子的磁珠,以除去殘存的NK、T、B淋巴細胞。

❾ 細胞組織的細胞工程在植物方面的應用

通過莖尖培養或微嫁接技術,可以脫去植物體內的病毒,獲得無病毒苗木,如蘋果、草莓等。另外,在組織培養過程中,如愈傷組織培養、細胞懸浮培養、原生質體培養等,通過pH值、溫度、離子濃度等條件的變化,可增加其變異,從中可篩選出優良的突變體,從而為新品種的選育開辟一條嶄新的途徑。
愈傷組織、懸浮細胞、原生質體等是基因轉化的良好受體材料,並且在離體培養條件下進行植株再生也是實現植物遺傳轉化的重要環節。
此外,微繁技術為種質的保存(germplasm storage)提供了新方法。很多種質資源在離體培養條件下,通過減緩生長和低溫處理而達到長期保存目的,並可進行不同國家、地區間的種質資源收集、互換、保存和應用,即建立「基因銀行」(gene bank),實現種質資源的全球共享。例如,在比利時Catholic University的Leuven研究中心有大量離體保存的香蕉種質庫。 細胞大量培養有用次生代謝產物是植物細胞工程另一個重要應用領域。通過細胞工程技術,刺激植物體內某些重要次生代謝產物的合成和積累,然後進行分離、提純,如某些名貴葯物、香精、色素等,實現植物產品的工業化生產。
早在1964年我國就開始進行人參細胞培養。1980年以後,我國研究者相繼開展了紫草、三七、紅豆杉、青蒿、紅景天和水母雪蓮等植物的細胞大量培養和研究,並利用生物反應器進行葯用植物的細胞大量培養的小試和中試。其中新疆紫草中試的規模達到100L,並小批量生產了紫草素,用於研製化妝品及抗菌、抗病毒和抗腫瘤葯物。紅豆杉細胞大量培養在我國也獲得初步成功,從細胞培養物中得到了珍貴的抗癌葯物紫杉醇,但產率還有待提高。 單倍體育種和相關研究在農業和園藝植物中得到了廣泛的應用。用Blakeslee等(1922年)和Kostoff(1941年)分別得到了單倍體植株單倍體有利於突變的檢測和抗性細胞系的篩選,並且大大縮短了育種的時間。此外單倍體在基因圖譜、基因轉移研究中具有重要作用。
自然形成的單倍體是極少見的,並且僅限於幾種植物。花葯培養是單倍體形成的重要途徑。自1964年第一例花葯培養獲得成功以來,花葯培養技術已取得了顯著的進展,尤其在水稻、小麥、玉米等作物中已獲得巨大成功。現已取得成功的果樹樹種主要有番荔枝(Nair等,1983年)、番木瓜(Litz和Conover,1978年)、4個柑橘品種(Chen,1985年)、龍眼(Yang和Wei,1984年)、荔枝(Fu和Tang,1983年)、蘋果(Zhang等,1990年)、梨(Jordan,1975年)、葡萄(Rajasekaran和Mullins,1979年)等。薛光榮等(1980年)對東方草莓(四倍體)的單核期花粉進行培養,成功的誘導出單倍體植株。
花葯培養主要是受基因型、花葯的發育階段、預處理和培養條件的影響,其存在的主要問題是單倍體的誘導頻率低,單倍體自發加倍形成的二倍體與體細胞組織形成的二倍體很難區分。例如,Fowler等(1971年)、Nishi等(1974年)和Rosati等(1975年)以八倍體草莓花葯為材料誘導愈傷組織,並分化出植株,發現其再生植株仍為八倍體,這些八倍體是由無性器官發育而來,還是由單倍體自發加倍而成則難以區分。
除花葯培養外,植物的卵細胞、助細胞、反足細胞等單倍體細胞通過離體培養可以分化成單倍體胚或愈傷組織。胚珠、子房培養也曾進行了大量嘗試,但大多數情況下,在愈傷組織階段生長停止。 胚的離體培養是直接應用於植物改良最早的組織培養技術。胚培養可以克服雜交後胚的衰亡,保證種內或種間雜交的成功,或用於無性繁殖困難的植物的培養。胚培養還可以克服種子的休眠和敗育。Magdalita等(1996年)和Drew等(1997年)分別進行了番木瓜的種內雜交,得到合適的胚子後,進行了胚培養,以促進雜交成功。Jordan(1992年)得到了愈傷組織,但未得到再生植株。
澳大利亞國際農業技術研究中心對番木瓜和其野生種的雜交胚進行了培養研究,已獲成功,並得到了雜交後代,野生種的抗性、高含糖量等優良性狀得到了遺傳。荔枝是較難進行離體培養的果樹樹種之一,Kantharajah等(1992年)培養了長度為3mm的荔枝幼胚。其他通過未成熟胚培養進行再生的樹種有鱷梨、番荔枝和番木瓜等。姚強(1990年)對桃、油桃和番桃花後60d的未成熟胚進行培養,獲得了再生植株。J.Button等(1975年)利用甜橙種胚愈傷組織離體培養獲得了完整植株。 (Protoplast culture)與體細胞雜交(Somatic hybridization)原生質體是去掉細胞壁的單細胞,它是在離體培養條件下能夠再生完整植株的最小單位。每個原生質體都含有該個體的全部遺傳信息,在適宜的培養條件下,具有再生成與其親本相似的個體的全能性。原生質體培養的主要目的是通過原生質體的融合,克服遠緣雜交障礙,實現體細胞雜交,從而產生雜交後代。在原生質體培養過程中,往往產生大量的變異,可從中選擇優良突變體。原生質體可以攝取外源細胞器、病毒、DNA等各種大分子遺傳物質,是進行遺傳轉化的理想工具,此外,在同一時間內獲得的大量原生質體在遺傳上是同質的,可為細胞生物學、發育生物學、細胞生理學、細胞遺傳學及其他一些生物學科建立良好的實驗體系。
Lizz(1986年)曾分離得到番木瓜的原生質體,Krikorian等(1988年)分離得到了香蕉的原生質體,但二者均未得到持續分裂的細胞。Nyman等(1987年,1988年)首先報道了草莓栽培品種Sengana和Canaga試管苗葉肉原生質體培養及植株再生。1992年,他們獲得了草莓試管苗幼葉和葉柄原生質體的再生植株。Infante等以森林草莓用(Fragaria vesca)Alpine營養系試管苗葉片和葉柄為材料分離原生質體,並獲得了再生植株。愈傷組織和懸浮細胞是制備原生質體的重要材料,但在落葉果樹上,只有少數樹種利用愈傷組織或懸浮細胞分離原生質體並獲得培養的成功,其中最成功的樹種當屬獼猴桃。蔡起貴等(1988年)通過愈傷組織分離出中華獼猴桃的原生質體,並獲得了再生植株。Kovalenko等(1990年)和Ochatt等(1988年)分別在Colt櫻桃和歐洲葡萄上利用懸浮細胞系分離原生質體並獲得再生植株。
林定波等(1997年)以胚性愈傷組織為材料,分離得到錦橙的原生質體,並獲得了再生植株。易干軍等(1997年)也以胚性愈傷組織為材料,分離得到柑橘(紅江橘)的原生質體,並獲得再生植株。但以葉肉為材料分離得到的原生質體未獲得成功。馬鋒旺等(1998年)對山杏的原生質體進行了分離和培養,在適宜條件下,山杏原生質體4~5d變形,5~6d開始第一次分裂,20d左右可形成15~20個細胞的小細胞團,60d後可形成肉眼可見的微愈傷組織。微愈傷組織經繼代培養後,可誘導不定芽和不定根,形成完整植株。丁愛萍等(1994年)曾對蘋果進行了原生質體培養和植株再生研究,以胚性愈傷組織建立的懸浮細胞系為材料,分離得到原生質體,並獲得了再生植株。
植物細胞在去除細胞壁後,能像受精過程那樣相互融合,可實現常規雜交不親和的親本之間進行遺傳物質重組,從而開辟了體細胞雜交的新領域。體細胞雜交已廣泛用於植物育種,已在胞質雄性不育、抗病等方面取得了顯著進展。同時,在木本果樹植物上也得到了有經濟價值的體細胞雜種植株。
目前兩種最有效的融合系統PEG——高pH/Ca2+ 方法和電擊融合方法。
第一例體細胞雜交是通過西紅柿和馬鈴薯的原生質體融合實現的。原生質體融合技術在柑橘種間雜交中得到大量應用。Ohgawary將甜橙的原生質體與飛龍的原生質體融合,得到了體細胞雜種植株。
美國學者Grosser將甜橙的懸浮培養細胞的原生質體與豪殼刺屬的Severinia disticha 愈傷組織的原生質體融合,得到了屬間異源四倍體的體細胞雜種植株。S.distcha 具有抗病、耐寒、耐鹽等優良性狀,適合作柑橘的砧木。 分子生物學的飛速發展,導致了植物科學的一場新革命。經過多年的探索,人們從分子水平對生物學和遺傳學有了深刻的認識,與組織培養技術相結合,分子生物學技術已開始應用於植物基因組的修飾和改變。
由於基因編碼的同一性,任何有機體內(如病毒、菌類、昆蟲)的有用基因都可以轉入到植物體。由於基因(如抗蟲或抗病基因)的導入,導致了新的基因型的出現或實現基因型的改良,可選育出抗蟲或抗病的基因型。
目前已經分離或應用的目的基因主要有抗植物病蟲害基因、抗非生物脅迫、改良作物產量品質的基因、改變植物其他性狀的基因等。
有關外源基因導入植物細胞的方法有多種,如農桿菌質粒介導法(包括Ti質粒的Ri質粒)、植物病毒載體介導法、DNA直接導入法(包括PEG介導、脂質體介導等化學誘導DNA直接轉化法,電激法、超聲波、顯微注射、激光微束、基因槍法等物理誘導DNA直接轉化法等)和種質系統介導基因轉化法(包括花粉管導入法,生殖細胞浸泡法,囊胚、子房注射法等)。目前最常用且最為有效的方法為根癌農桿菌介導法和基因槍法。自1983年首次用農桿菌介導法在煙草和馬鈴薯上取得成功以來,約有120種植物採用此方法進行轉化。農桿菌介導法對雙子葉植物十分有效,但在單子葉植物中也已開始應用。基因槍法既可以愈傷組織作為受體,又可以懸浮細胞作為受體,並且對單雙子葉植物都十分有效。

❿ 細胞工程的種類

又稱為染色體轉導,或染色體介導的基因的轉移。染色體轉導術,目前有兩類,其一,稱為微細胞轉移術。應用低濃度秋水仙素長時間處理可使細胞微核化,經去核處理後,可得到只含相當於幾個乃至一個染色體的微細胞。微細胞被導入完整細胞以後仍顯示RNA合成,因而微核編碼的基因信息可望在微細胞異核體內表達出來。如小鼠的微細胞可被導入至另一品系的小鼠或倉鼠乃至人的HeLa細胞內。電泳檢測顯示存在著小鼠基因型的大分子物質,如脂酶D、嘌呤核苷磷酸化酶和肽酶B。已知前兩種酶的結構基因定位於小鼠的第14號染色體上。提示小鼠的該號染色體已進入宿主細胞內並行使其功能。
另一種方法是先誘發細胞同步分裂,繼用秋水仙素阻抑細胞分裂於中期,再破碎細胞,通過離心收集大量的中期染色體。有人把此法得到的人或倉鼠的中期染色體轉移到小鼠細胞內,並探查到有特異的供體基因的功能產物, 動物的染色體工程與育種
如胸苷激酶(TK)與次黃嘌呤磷酸核糖基轉移酶(HPRT)。並推測整合到宿主小鼠內攜帶TK基因的染色體片段約大於 17000個鹼基。有人證明通過染色體介導的基因轉移,不僅在宿主細胞的分裂過程中能穩定地傳給子代,而且還能進行連續轉移,如人染色體基因可以轉移到小鼠細胞內,然後再使用同樣的技術從小鼠細胞轉移到中國倉鼠細胞內。這些實驗是在染色體水平上進行基因轉移的良好開端。 在高等植物方面的染色體工程,目前還僅在六倍體普通小麥與其他種、屬之間做過。六倍體普通小麥的染色體組型是由野生一粒小麥AA、小斯卑特山羊草BB和匯山羊草DD三種類型的染色體組融合而成,是一種能正常繁殖的種間雜種(AABBDD),因此,很容易容納其他種、屬染色體添加或替代。這個領域的研究目的在於改良作物品種和探究物種起源。
1.染色體的消除①單體植物,起初是利用自然發生的單倍體普通小麥製作。現在則用人工誘導花粉或未受精的子房產生的單倍體植株為材料進行。這是因為普通小麥的單倍體植株只有21條染色體,都不是成對的,因此在成熟分裂(見減數分裂)時沒有聯會的對象,故仍為單價染色體。這21個單價染色體能排列在赤道板上縱裂為二,在後期Ⅰ被平均分配到細胞的兩極。但在第二次分裂時,這21個染色體不再縱裂,隨機分開,結果產生了染色體數從0~21個的 21種類型的配子。這些配子只有具19條或20條染色體的有受精能力。因此,如果用正常植株的花 植物的染色體工程與育種
粉(n=21)給單倍體植株授粉,n=20的卵細胞以一定的比例受精,結果得到2n=41的植株。其染色體組型中有20條染色體因有同源(對應)染色體故可以配對形成二價染色體。而只有一條染色體沒有配對,成為單價染色體,因此稱這種類型的植物叫單體植物。例如,美國米蘇里大學的E.R.西爾斯於1937~1954年共用了十七年的時間,用中國春小麥中發現的兩個單倍體植物與正常花粉授粉,得到的後代中找到了 5種單體植物。其後用同樣方法製作一套21種單體植物。除普通小麥外,煙草和硬粒小麥也製成了一套單體植物。②缺對植物,單體植物的體細胞染色體數為2n=41。在成熟分裂後,將形成兩種配子,即n=21,n=20,這兩種雌雄配子都有受精能力,而且自花授粉後也容易結實。不過兩者受精率的高低有差別。因此,受精時,兩種配子按一定比例進行結合。結果見表1。如果缺失型的花粉與缺失型的卵細胞結合為受精卵,由此發育成的植物,將比通常的普通小麥少一對染色體,所以叫缺對植物。E.R.西爾斯用此方法也培育出了一套普通小麥缺對植物。
2.染色體的添加①同種染色體的添加,所添加的染色體來自同種個體,添加一個的叫三體植物(2n+1);添加一對的叫四體植物(2n+2)。三體植物和單體植物一樣,可得自單倍體三倍體或缺體。它的來源很多。如普通小麥單體植物在成熟分裂時,有時會出現不分離現象(即單價染色體的二個姊妹染色單體在後期Ⅰ被同時拉到同一極,而不是各自分配到兩極)。結果所形成的四分孢子,其中三個的染色體數是n=20,一個是n=22。如果多一個染色體的配子與正常花粉或卵細胞 (n=21)受精後,就成為三體植物(2n=43),比原來正常普通小麥多了一個染色體。三體植物自花授粉的後代中就有四體植物出現。因為三體植物在成熟分裂時形成兩種配子(n=21,n=22)。如果讓三體植物自花授粉,就會出現三種類型的子代,如表2所示。其中就有新型的四體植物,比正常植物多兩條染色體。②異種染色體的添加,所添加的染色體來自別種植物。以普通小麥(W)和黑麥(R)2n=14雜交為例(圖1)。由於黑麥染色體不能和普通小麥配對,在成熟分裂染色體重組時,黑麥基因不能直接轉移到小麥染色體上,而只能將黑麥整個染色體組加到小麥的染色體組中,所得子一代雜種為多倍單倍體(21′W7′R),僅28個染色體。經過秋水仙素處理加倍後,成為小黑麥八倍體(21″W7″R)共有56個染色體,再與小麥回交得到七倍體(21″W7′R),共49個染色體。然後與小麥再回交一次,就可得到外加的單體植物。單體植物自交後得二體植物(44個染色體21″W1″R)。另外,還有一個外加系是加入了黑麥第Ⅱ對染色體,成為44個染色體的二體植物。這種外加系能使小麥抗銹(見染色體倍性)。
3.染色體的替代用同種或異種染色體來替代某特定染色體的技術。其目的是要把已知道的具有抗病或其他有利特性的某一染色體來替代另一個具有其他性狀的染色體,以改良作物品種。染色體替代有三種方法:①用普通小麥自身的染色體來替代。例如,普通小麥的一對1A染色體被一對1B染色體替代後,就能育成缺對1A、四體 1B植物,即缺對-四體植物。這種類型的植物是由缺對1A與四體1B雜交後所得子一代再自花授粉後選育而成。②普通小麥的一個品種的染色體用別的品種的染色體來替代,叫做同種染色體替代。如果用正常普通小麥B品種的花粉,與缺對的A品種雜交,所得子一代自花授粉,則在子二代就能選育出A品種的缺對的二條染色體被B品種染色體替代的植物。③用異種植物的染色體來替代,叫異種染色體替代。例如,普通小麥的2A染色體可用黑麥的2R染色體替代。為了達到這個目的,首先要育成基本材料缺對植物(2n=42-2A)和異種染色體外加系(2n=42+2R)。這樣就可把普通小麥缺對2A與小麥2R染色體外加系(具有21對小麥染色體加上一對黑麥2R染色體)雜交,子一代雜種染色體2n=42,其中20對染色體是除2A外的全部普通小麥染色體,其餘二個一價染色體是2A和2R,成熟分裂時可產生四種類型配子,即:n=20+2A+2R,n=20+0,n=20+2A=21,n=20+2R=21。這最後一種是具有除2A以外的20個普通小麥染色體一個黑麥的2R染色體。因此,子一代雜種自花授粉的後代中,就能得到所期望的異種染色體替代植物。即一對黑麥的2R替代了一對小麥的2A(20″W2″R)。
現在,應用染色體工程的方法,在許多添加和替代染色體工作中,已經獲得了不少有遺傳學和育種學價值的品系。例如,獲得了添加單個冰草染色體的小麥品系中間,有的能抗粉露菌病、稈銹和葉銹。這種抗性均呈現顯性單因子遺傳。將黑麥第Ⅲ對染色體加到軟粒小麥對粉露菌病有抗性。用冰草的一個染色體替代軟粒小麥染色體3D,使軟粒小麥對稈銹有抗性。這些在生產實踐上都有實用價值。 誘導增加或減少一個生物體內整套染色體組數的技術。增加同種染色體組數的叫同源多倍體;增加異種染色體組數的叫異源多倍體,異源多倍體必須經過雜交才能得到(圖2)(見染色體倍性)。
染色體組工程的方法:多倍體的誘發自1937年發現了用秋水仙素誘發多倍體的方法以來,一般常用葯劑(秋水仙素、富民隆等),也可用高溫處理來誘發多倍體。其法是把植物的種子或幼芽浸在 0.05~0.2%的秋水仙素水溶液中,處理24~96小時即可得到很好的效果。例如四倍體西瓜、甜菜、玉米和百合等都是用此法獲得的(圖2)。
現在,由於原生質體分離技術的發展,也可從原生質體的融合得到多倍體。例如用聚乙二醇作誘導融合劑處理胡蘿卜原生質體後,得到了頻率相當高的四倍體和六倍體植株。這是來源於二個或三個原生質體融合的結果。
單倍體的誘發60年代以來,子房、花葯或花粉離體培養成功,很易從大孢子、卵細胞或小孢子等得到單倍體植株。其法是將一定時期的花葯或子房移植到特定的培養基上培養。待生長愈傷組織或胚狀體後,再移到分化培養基上,分化出苗和根,長成完整的小植株即可移到盛有土壤的盆中繼續栽培到開花。單倍體植物一般不能結實或僅結少量種子。
此外,還可用遠緣雜交,X射線或紫外線照射,化學葯品如馬來醯肼、甲苯胺藍、氯黴素等以及異源胞質等方法都能誘導單倍體產生。1970年有人又用大麥與球莖大麥雜交後染色體消除的方法,產生高頻率的單倍體,有的可高達68.5%。在雜交後,球莖大麥的7個染色體就消除在胚中,留下的是大麥的7個染色體,成為單倍體的胚及小植株。經秋水仙素處理後,染色體加倍形成純合二倍體。
染色體組工程的應用誘導多倍體在植物育種上的應用是有限度的。由於作物類型不同,對多倍性誘變反應也不同。原來的倍性水平、染色體組的結構、繁殖方式、多年生性、植株實用部位,所有這些都關繫到育種的成敗。最適宜用染色體加倍方法改良的作物應該具有:①染色體數目較少,②以收獲營養體為主,③異花授粉,④多年生和營養繁殖的習性等條件。這些都是多倍體育種獲得成功的先決條件。 研究真核細胞的核、質相互關系以及細胞器,胞質基因的轉移等細胞拆合的技術,所以又叫細胞拆合工程。主要研究內容是細胞質的置換。過去在植物上置換的方法是進行連續回交。例如,為了研究柳葉菜屬的細胞質遺傳,曾連續回交了二十五代,結果還不能把全部母核替代出來。現在由於核移植和原生質體的分離方法的改進,推進了這項工程的進展。
細胞質工程的方法去核和核移植 動物細胞核的移植一般都用顯微操作器進行。50年代初期,美國生物學家R.布里格斯和T.金首先成功地把豹蛙囊胚期細胞的細胞核移植到去核的蛙卵,並能正常發育。後來,英國J.B.格登把爪蟾蝌蚪腸上皮細胞核移植到去核卵內,能發育到有生殖能力的成體。中國童第周等還成功地進行金魚類異種、異屬之間的核移植實驗(見細胞分化)。70年代以來,體外培養的動物細胞的去核,是先用細胞鬆弛素B處理細胞,再高速離心使細胞核與細胞質分開。分離出來的核,帶有少量胞質並圍有質膜,稱為「核體」或「小型細胞」。核體能重新再生其胞質部分,繼續生長、分裂。去核後的胞質部分,仍由膜所包圍,即為「胞質體」或「去核細胞」(圖3)。秋水仙素及其衍生物和長春新鹼等也能誘發某些哺乳類細胞排核。目前制備胞質體和核體的方法目臻完善,純度可達99%左右。胞質體約可存活18~36小時。
植物細胞核的移植,在低等植物如單細胞傘藻,可把新鮮材料的假根切下,放在玻片上用玻棒擠壓,使細胞的內含物壓出在一滴適合的培養液中,反復沖洗幾次,然後在顯微鏡下觀察,一直到核周圍無細胞質為止。離心分離後待用。高等植物如矮牽牛、天仙子、煙草、番茄等原生質體核的分離,可先在懸浮的原生質體中用蒸餾水將懸液沖淡一半,約30分鍾後,原生質體破裂,放出細胞核與葉綠體,就可在0.6M蔗糖液中離心和收集核,然後存放在一定的培養液中待用。1978年以來又借用動物細胞去核的葯劑細胞鬆弛素B來處理原生質體,加上高速離心,使原生質體分離成二部分,即:無核原生質體和小原生質體。開辟了去植物細胞核甚至去部分染色體的新途徑。
細胞重組已經分離的核體(小細胞)與胞質體在融合因子的介導下重新融合,構成「重組細胞」,這一技術即稱為細胞重組,胞質體與另一完整細胞融合,即產生「胞質雜種」細胞。這兩種細胞產生的效果是不同的,現在有方法把它們鑒別開。以大鼠二種成肌細胞為材料,一種是正常的具有次黃嘌呤-鳥嘌呤-磷酸核糖基轉移酶(HGPRT+)基因, 另一種是突變體缺少這種基因(HGPRT-),因此,前者細胞中有轉移酶能被氚-次黃嘌呤標記,而後者沒有這種酶,便不能標記。在兩者的細胞質中讓HGPRT+攝取小乳膠顆粒,讓HGPRT-攝取大乳膠顆粒,以顆粒的大小來作標記。當核體(小型細胞)與胞質體融合後,在重組細胞中可看到核被氚-次黃嘌呤所標記,在細胞質中有大量大乳膠顆粒和極少數小乳膠顆粒。當胞質體與另一個HGPRT+完整細胞融合後的胞質雜種細胞的細胞質中,則同時出現有大量的大、小乳膠顆粒。如圖4所示。應用這種方法很容易把兩類細胞鑒別出來。
在植物中,原生質體與核的融合以煙草、矮牽牛的核移植為例,其步驟是:①先使矮牽牛游離核與煙草原生質體各自懸浮並沉澱在0.25M硝酸鈣溶液中,pH6;②去掉上清液,再把它們懸浮起來,以適當比例使核與原生質體在試管中混合、離心,隨後加入45%聚乙二醇溶液1毫升使之聚合:③30分鍾後,徐徐加入4毫升0.2M硝酸鈣(被pH9的甘氨酸氫氧化鈉所緩沖)以誘導融合攝取核;④15分鍾後加0.2M硝酸鈣(pH6);⑤再過20分鍾,原生質體用培養液沖洗;⑥鏡檢後,將具有雙核的(其中一個是矮牽牛的核)煙草原生質體進行培養。
細胞質工程的應用動物方面1974年有人用兩種小鼠成纖維細胞,其一用L細胞的完整細胞,它的核內具有對5-溴脫氧尿苷抗性的核基因BUd(RR),但細胞質內沒有抗氯黴素的胞質基因,用的另一個細胞的線粒體上帶有抗氯黴素的胞質基因CA(PR),而細胞核內帶有硫代鳥嘌呤敏感核基因(TGS),把後者去核細胞與前者融合(圖5),則融合後的胞質雜種細胞既能抗5-溴脫氧尿苷(BUdR),又能抗氯黴素(CAP)。但如果把親體細胞 (BUdRR和TGS)同時培養在含有這兩種葯物的培養基上,則都將死去。因為這兩種細胞一個對CAP敏感,另一個不抗BUdR,而胞質雜種細胞則兩者都能抗,不但能存活而且還能增殖。
植物方面用等滲密度梯度高速離心後,也可得到兩種亞原生質體,①在低密度范圍內可得到胞質體(去核原生質體);②在高密度中,可得到小原生質體(核質體)。現在已能自玉米、煙草和胡蘿卜細胞得到這兩種亞原生質體。生化實驗證明:去核原生質體代謝作用很低,而小原生質體由於減少了表面積和體積(僅及原生質體的10~15%),因此,攝取物質快,合成蛋白質也快,培養時發育迅速,是一種研究核質關系的好材料。由於這項工作才開始,迄今尚無明顯結果。 細胞融合是指用自然或人工的方法,使兩個或幾個不同的細胞融合成一個細胞的過程。細胞融合的結果,一個細胞中含有兩個不同的細胞核,則稱為異核體;隨後的有絲分裂中,來自不同細胞核的染色體可能合並到一個結合核內。因此,又稱為體細胞雜交。細胞融合的范圍很廣,從種內、種間、屬間、科間一直到動、植物兩界之間都進行了嘗試。在植物方面,由於各類細胞具有全能性,在煙草、矮牽牛、胡蘿卜等種間雜種,馬鈴薯和番茄、曼陀羅和顛茄、煙草和矮牽牛等屬間雜種都已獲得了再生植株。在動物方面人和鼠體細胞雜交,雖然不能長成一個新個體,但能作基因定位的材料。因此,這項新技術,在理論研究和工、農、醫方面的應用,均有廣闊的前景。細胞融合技術的發展,歷史很短。自1960年在體外培養中發現雜種細胞以來,僅20多年。1965年岡田善雄等和H.哈里斯等各自用滅活的仙台病毒誘導產生了第一個種間異核體。1970年已應用人與鼠的細胞雜交系統地進行了人類染色體基因的定位工作。在植物方面,1960年E.C.科金首先使用纖維素酶分離番茄幼根的原生質體獲得成功。1970年他們又成功地使種間原生質體融合在一起。1972年P.S.卡爾森等又從融合的原生質體獲得了第一株種間細胞雜種。到1980年為止,種間融合的再生植株已有16種之多。
細胞融合的方法動物細胞雜交或細胞融合 將兩個不同種的親本細胞A和B,以滅活的仙台病毒或聚乙二醇(PEG)為融合誘導劑,使A和B兩細胞融合成為一個具兩個遺傳性不同核的異核體(如遺傳性相同的核融合在一起叫同核體)。隨後異核體經有絲分裂成為兩個具有A和B兩親本的雜種融合核。AB雜種經多次分裂,B親本的染色體會逐漸減少到一個或完全消失(圖6)。
植物體細胞雜交①原生質體的分離。植物細胞之間有果膠質粘連,每個細胞之外還有一層纖維素組成的壁,因此,在分離原生質體時,首先要在一定濃度的酶液(果膠酶與纖維素酶)中保溫,消去果膠質與纖維素後才能使原生質體分離出來。②原生質體的融合。不同種之間原生質體的融合,須選用一種融合誘導劑(聚乙二醇,或高鈣CaCl2.2啹O,0.05M溶於甘露醇 0.4M和pH10.5)誘導融合。它們的誘導率可達20~50%。③雜種細胞的選擇與培養。細胞融合後要把雜種細胞選擇出來。一般都利用各種生化指標和遺傳標記來選擇和鑒定。例如,使用天然的或人工誘變的突變體,如白化苗、營養缺陷型、抗葯性突變體等,或根據不同材料對激素敏感性不同,生長差異等,來設計適合的選擇系統。如果融合的原生質體一個是白化,另一個具葉綠體,就可用機械的方法,把融合的細胞在倒置顯微鏡下把它們挑選出來進行培養。這些細胞培養到各個發育階段,如愈傷組織、分化苗和根,都需要更換培養基,才能使它們順利地再生成植株。

閱讀全文

與細胞工程常用的組織分離方法相關的資料

熱點內容
高空作業坐板使用方法 瀏覽:161
家庭黃瓜的種植方法 瀏覽:111
傾斜角檢測裝置和傾斜角檢測方法 瀏覽:519
幔簾安裝方法 瀏覽:255
下山最簡單的方法 瀏覽:771
電子經緯儀快速安裝方法 瀏覽:361
egg摩絲洗面奶使用方法 瀏覽:260
故障碼讀取與清除方法常用萬用表 瀏覽:751
流量共享怎麼使用方法 瀏覽:375
滾筒洗衣機搖晃怎麼解決方法 瀏覽:509
半水調漂方法視頻 瀏覽:373
kindle使用方法說明書 瀏覽:854
油畫無痕掛鉤使用方法 瀏覽:839
幼兒貼肚臍貼的正確方法 瀏覽:47
內開窗安裝方法 瀏覽:565
質性研究主題分析方法 瀏覽:448
汽車提速異響解決方法 瀏覽:489
科三有什麼方法定好油門 瀏覽:743
電腦表格列印方法 瀏覽:454
泡腳片的使用方法 瀏覽:904