導航:首頁 > 使用方法 > 奧數最常用的方法是什麼

奧數最常用的方法是什麼

發布時間:2022-07-29 02:41:25

『壹』 如何掌握奧數題的方法

『貳』 孩子現在正在學習奧數呢,好多題不太會做,奧數學習技巧有哪些

學好奧數的五大技巧:

1、題目最好做兩遍
要想學好奧數,平時的練習必不可少,但這並不意味著要進行題海戰術,做練習也要講究科學性。在選擇參考書方面可以聽一下老師的意見,一般來說老師會根據自己的教學方式和進度給出一定的建議,數量基本在1―2本左右,不要太多。
在選好參考書以後要認真完整地做,每一本好的參考書都存在著一個知識體系,有些同學這本書做一點,那本書做一點,到最後做了許多本書但都沒有做完,無法形成一個完整的知識體系,效果反而不好。做題的時候要多做簡單題,並且要定好時間,這樣可以提高解題速度。
2、抄筆記別丟了「西瓜」
其實小升初考查的奧數題大部分都是基礎題,只要把這些基礎題做好,分數便不會低了。要想做好基礎題,平時上課時的聽課效率便顯得格外重要。教奧數的老師一般都經驗豐富,他們上課時所用的講義內容可謂是精華,認真聽講1個小時要比自己在家復習兩個小時還要有效。聽課時可以適當地做些筆記,但前提是不影響聽課的效果。有些同學光顧著抄下題目的步驟解法卻忽略了老師解題的思路,這樣就是「撿了芝麻丟了西瓜」,反而有些得不償失。
3、建立「錯題本」
建立一個「錯題本」,把平時犯的錯誤記下來,找出「病因」開出「處方」,並且經常地拿出來看看、想想錯在哪裡,為什麼會錯,怎麼改正,這樣到中考時你的數學就沒有什麼「病例」了。我們要在教師的指導下做一定數量的數學習題,積累解題經驗、總結解題思路、形成解題思想、催生解題靈感、掌握學習方法。
4、熟記常用公式
准確對經常使用的數學公式要理解來龍去脈,要進一步了解其推理過程,並對推導過程中產生的一些可能變化自行探究。對今後繼續學習所必須的知識和技能,對生活實際經常用到的常識,也要進行必要的訓練。例如:1-20的平方數;簡單的勾股數;正三角形的面積公式以及高和邊長的關系;30°、45°直角三角形三邊的關系……這樣做,一定能更好地掌握公式並勝過做大量習題,而且往往會有意想不到的效果。
5、舊題新解
不定時的翻翻原來做過的試題,但是重點是思考有沒有新的解題思路和解題技巧。這樣不斷地增加思考有利於形成學生思考習慣的形成,也有利於學生發散思維的形成,多角度考察問題的思路,並隨時利用新學知識去解決問題。

『叄』 奧數題的解題技巧有哪些

1、直推法

就是直接進行分析推理,有條件出發運用相關的知識直接對問題進行分析,進行推導之後計算出結果,最終做出正確的分析和判斷。這是最基本、最常用、最重要的方法。

適用題型:計算類選擇題一般都用這種方法,其它題也常用這種方法

2、反推法

反推法即反向推導或反向代入法。反推法是由選項(即選擇題的各個選項)反推條件,與條件相矛盾的選項則排除,相吻合的則是正確選項,或者將某個或某幾個選項依次代入題設條件進行驗證分析,與題設條件相吻合的就是正確的選項。

3、反例法

如果某個選項是一個命題,要排除該選項或說明該命題是錯誤的,有時只要舉一個反例即可。舉反例通常是用一些常用的、比較簡單但又能說明問題的例子。如果大家在平時復習或做題時適當注意積累一下與各個知識點相關的不同反例,則在考試中可能會派上用場。

4、特值法(特例法)

如果題目是一個帶有普遍性的命題,則可以嘗試採取一種或幾種特殊情況、特殊值去驗證哪些選項是正確的、哪些是錯誤的,或者哪些極有可能是正確的或錯誤的,從而做出正確的選擇。

5、反證法

在選擇題的4個選項中,若假設某個選項不正確(或正確)可以推出矛盾,則說明該選項是正確選項(或不正確選項)。選擇先從哪個選項著手證明,須根據題目條件具體分析和判斷,有時可能需要一些直覺。

6、數形結合

根據條件畫出相應的幾何圖形,結合數學表達式和圖形進行分析,從而做出正確的判斷和選擇。這種方法常用於與幾何圖形有關的選擇題。

7、排除法

如果可以通過一種或幾種方法排除5個選項中的4個,則剩下的那個當然就是正確的選項,或者先排除5個選項中的3個,然後再對其餘的2個進行判斷和選擇。

『肆』 怎麼樣學習奧數方法最好

奧數學習最重要的是對孩子學習思維方式、學習方法的培養和引導。那麼怎樣更好地培養孩子的學習思維方式、方法,換言之就是孩子們如何能學好奧數?
其實,所謂好的學習方法,就是要養成優秀的學習習慣。這樣才能在學習中達到事半功倍的效果。下面我們就來說說學習奧數時我們需要注意哪些方面:

1、預習奧數題目要注意的

預習是上課前對即將要上的奧數內容進行閱讀,了解其梗概,做到心中有數,以便於掌握聽課的主動權。預習是獨立學習的嘗試,對學習內容是否正確理解,能否把握其重點、關鍵,洞察到隱含的思想方法等,都能及時在聽課中得到檢驗、加強或矯正,有利於提高學習能力和養成自學的習慣,所以它是奧數學習中的重要一環。

在預習奧數時要找出學習新知識所需的知識,並進行回憶或重新溫習,一旦發現舊知識掌握得不好,甚至不理解時,就要及時採取措施補上,克服因沒有掌握好或遺忘帶來的學習障礙,為順利學習新內容創造條件。

預習時,一般採用邊閱讀、邊思考、邊書寫的方式,把內容的要點、層次、聯系劃出來或打上記號,寫下自己的看法或弄不懂的地方與問題,最後確定聽課時要解決的主要問題或打算,以提高聽課的效率。在時間的安排上,預習一般放在復習和作業之後進行,把下次課要學的內容看一遍。

檢驗預習的效果如何從兩個方面考慮:①下一講的基礎知識是什麼?②下一講還有哪一些內容有哪些問題,學會帶著問題去聽課。

2、聽講時要注意的

聽課的方法,除在預習中明確任務,做到有針對性地解決符合自己的問題外,還要集中注意力,把自己思維活動緊緊跟上教師的講課,開動腦筋,思考教師怎樣提出問題,分析問題,解決問題,特別要從中學習奧數思維的方法,如觀察、比較、分析、綜合、歸納、演繹、一般化、特殊化等,就是如何運用公式、定理,了解其中隱含著的思想方法。

聽課時,一方面理解教師講的內容,思考或回答教師提出的問題,另一方面還要獨立思考,鑒別哪些知識已經聽懂,哪些還有疑問或有新的問題,並勇於提出自己的看法。如果課內一時不可能解決,就應把疑問或問題記下,留待自己去解決或請教老師,並繼續專心聽老師講課,切勿因一處沒有聽懂,思維就停留在這里,而影響後面的聽課。

聽課,一定要做筆記!做筆記不是把老師的板書原樣抄錄一遍,而是把老師的講課的思路記到例題的旁邊,同時要記到腦子里。

3、奧數復習時要注意的

復習就是把學過的奧數知識再進行學習,以達到深入理解、融會貫通、精煉概括、牢固掌握的目的。復習應與聽課緊密銜接、邊閱讀教材邊回憶聽課內容或查看課堂筆記,及時解決存在的知識缺陷與疑問。

同時,復習還要在理解教材的基礎上,溝通知識間的內在聯系,找出其重點、關鍵,然後提煉概括,組成一個知識系統,從而形成或發展擴大數學認知結構。

此外,復習時,不能僅停留在把已學的知識溫習記憶一遍的要求上,還要找習題去練習,只有在實踐的基礎上才能檢驗出來哪些知識點理解了,哪些知識點沒有吃透還需要進一步學習。對之前學過的知識點在過一周後,同學們最好對原來所學知識有目的的復習一下,這樣做,這時候你用時不會太多,但效率是極高的。

4、做奧數作業時要注意的

奧數題對學生們的要求是非常嚴格的,你既要注意到思維有廣度有深度,在做題時還要加倍小心。有些題往往是一字之差,謬之千里。

奧數作業表現為解題,解題要運用所學的知識和方法。因此,在做作業前需要先復習,在基本理解與掌握所學教材的基礎上進行,否則事倍功半,花費了時間,得不到應有的效果。

解題,要按一定的程序、步驟進行。首先,要弄清題意,認真讀題,仔細理解題意。如哪些是已知的數據、條件,哪些是未知數、結論,題中涉及到哪些運算,它們相互之間是怎樣聯系著的,能否用圖表示出來,等等,要詳細加以推敲,徹底弄清。

其次,在弄清題意的基礎上,探索解題的途徑,找出已知與未知,條件與結論之間的聯系。回憶與之有關的知識方法,學過的例題、解過的題目等,並從形式到內容,從已知數、條件到未知數、結論,考慮能否利用它們的結果或方法,可否引進適當輔助元素後加以利用是否能找出與該題有關的一個特殊問題或一個類似問題,考察解決它們對當前問題有什麼啟發;能否把分開,一部分一部分加以考察或變更,再重新組合,以達到所求結果,等等。這就是說,在探索解題過程中,需要運用聯想、比較、引入輔助元素、類比、特殊化、一般化、分析、綜合等一系列方法,並從解題中學會這一系列探索的方法。

第三,根據探索得到的解題方案,按照所要求的書寫格式和規范,把解的過程敘述出來,並力求簡單、明白、完整。最後還要對解題進行回顧,檢查解答是否正確無誤,每步推理或運算是否立論有據,答案是否說盡無遺;思考一下解題方法可否改進或有否新的解法,該題結果能否推廣等,並小結一下解題的經驗,進而發展與完善解題的思想方法,總結出帶有規律性的東西來。

養成好的學習品質,擁有好的學習方法比學習知識本身重要得多,它是學好知識的前提,學習奧數就是如此。希望同學們從現在做起,養成良好的學習習慣,做一個學習的有心人!

『伍』 如何學好小學奧數的幾個小竅門

學好奧數網路網盤免費下載

鏈接:

提取碼: rcbp

學生在學習數學過程中,思維應佔有重要地位。而思維又是學生在學習數學知識和掌握方法的基礎上形成的,是數學知識與學生主體認識相互作用的結果。思維訓練已成為當前數學教學的重要內容。為了使學生獲取數學思維能力,就必須以學生已有的數學概念為基礎,運用學生已有的數學知識,靈活地處理新的問題,學生通過數學判斷和推理等形式認識數學對象,掌握新知識。

『陸』 解決奧數問題的基本與常用方法

1、配方法

所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

6、構造法

在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。

7、反證法

反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。

歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

8、面積法

平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

9、幾何變換法

在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。

幾何變換包括:(1)平移;(2)旋轉;(3)對稱。

(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。

(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。

(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。

(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。

(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。

『柒』 如何學習奧數

1.我們在學習奧數的時候,先要來培養孩子的興趣愛好,所以在學習的時候,孩子對這門課是否感興趣是很重要的一點。培養孩子的興趣就是讓孩子愛學,而不是家長硬要著孩子去學。但是在完成這個任務的是時候,一方面需要家長的引導,另一方面需要我們老師良好的教學藝術,讓孩子喜歡學這門課,是最關鍵的。

2. 還有在學習的時候,要培養孩子的學習方法,在學的時候,一是學會課前預習,在老師講新知識之前,學生要認真閱讀要學的內容,課前自學例題,還有在看書時,要動腦思考。二是善於解決難題,學生的思路往往是由疑問開始的,學生的肯提出問題是學會創新的關鍵。還有在學習時,經常提出問題,可以開拓自己的思維空間,能很好的提高解決問題的能力。

3. 還有要養成良好的學習習慣,培養好的習慣是最重要,但是這些對於學奧數是很有幫助的,小的時候,養成好的習慣是很重要的,在以後的日子也會用上,良好的學習習慣對於學習來說是由很大的幫助的,要是有壞習慣是很難改的。

(7)奧數最常用的方法是什麼擴展閱讀:

一、切忌題海戰術

不要盲目進行題海戰術,欲速則不達。一定要精選題,精練習,要難易程度不同比例進行練習,要在有經驗的老師指導下練習。否則,會把題目越積越多,從而打擊孩子學習熱情與自信心,後果嚴重時,會導致對奧數的反感。

二、要有信心

只要能夠按照要求去做,突破瓶頸,事在人為!

三、把學習當成興趣

學習奧數並不痛苦,很多學生把奧數當作樂趣。數學實在是很美的,方程是美麗的,解方程的過程是一種享受。只有將之作為興趣愛好,才能更高效的進行學習。愛奧數,從而精奧數。

四、要學會研究性學習

要把一道題當作一類題進行研究。要留意總結,留意拓展,留意自己「編題」。用多種方法解一道題,做「一當十」,形成優秀的思維習慣,這不止是六年級決勝小升初,更重要的是對後續理科學習,益處無窮。

『捌』 做奧數題時的方法

其實想要學好奧數,首先你得對數學感興趣,對數字得敏感!一般數學分為幾大塊:概率、集合、幾何(包括立體幾何和平面幾何)、函數、不等式、向量、數列等等,這裡面又有一條貫穿全部的線就是函數,幾乎所有的數學知識和函數的有關。當然各個方向不一樣,學習的方法就不一樣,但總的來說都是要多做題,但是做題的目的不一樣,有的靠做題熟練背記公式(像概率、集合),有的靠做題積累解題的方法和思想(像不等式、數列)。總之多做題,多積累方法,學會融匯貫通。

你是高中生吧?!奧數還是有捷徑的,就是用高等方法來解決初等問題,中學的奧數基本都是初等問題,高等問題較少,所以你可以自學一點大學的高等數學,上冊基本能看懂,下冊有點困難,不過上冊就夠了,裡面有很多經典公式定理,解決初等問題很簡單,乃至高考數學最後一道題很多都是高等數學裡面的。
還有就是一些比較靈活的、不按常規套路而又和生活實際聯系緊密的題,那個就得靠自己對待問題和解決問題的思維方式和靈感,也許一個很簡單的問題就是想不出答案來。比如你說的:有三個袋子,裝滿了小球。上面分別貼著「紅」、「白」、「混」的紙條,但是裡面裝的小球跟袋子上寫的完全不一樣。現在,只允許你在其中一隻袋子里,摸一隻球,你能立刻推斷出其它袋子里球的顏色嗎?
很明顯這個題你要尋找它們的共性或者一個比較特殊的東西,那就是混的那個袋子,裡面裝的不是混的球,取一個,如果是白球,那麼白袋裡面是紅球,紅袋裡面是混球;如果是紅球,那麼白袋裡面是混球,紅袋裡面是白球。就這么簡單,而且這道題很容易用枚舉法,紅、白、混袋挨個試。
祝你能學好奧數!望採納!

『玖』 奧數題六種常用解法 需要用這種解法的奧數題能各舉出兩題以上嗎

gemen ninu

閱讀全文

與奧數最常用的方法是什麼相關的資料

熱點內容
塑料薄膜吸水率檢測方法 瀏覽:662
植物中葯的鑒別方法 瀏覽:143
如何練習口才方法 瀏覽:409
裸色隔離霜的正確使用方法 瀏覽:771
玻璃水種真假的鑒別方法 瀏覽:599
識字教學方法幼小銜接 瀏覽:826
論文類似於swot的分析方法 瀏覽:964
小腦病變怎樣治療方法 瀏覽:296
自我檢測五官的方法 瀏覽:758
宮燈圖片製作方法 瀏覽:688
油菜花的種植方法和功效 瀏覽:682
用什麼方法可以讓魚到水面吃食 瀏覽:702
戴口罩正確方法 瀏覽:488
iqoo手機網路卡頓嚴重解決方法 瀏覽:204
安裝障礙物的方法 瀏覽:332
硬碟在電腦里的使用方法 瀏覽:957
手機臂帶使用方法 瀏覽:835
櫥櫃門板測量方法 瀏覽:159
通氣還有哪些方法 瀏覽:732
長了口腔潰瘍最快解決方法 瀏覽:788