⑴ 開發中,SQL語句優化有哪些方法
看你資料庫類型和框架是否支持。
一般開發中遇到慢SQL存在3個問題(索引健全的情況下)。
數據量多導致總行數慢,因為數據在不歸檔、遷移、轉總賬的情況下會不斷積壓。許可權越高看見的數據量就越大,數據量越大總行數就越高。一般框架是以分頁的SQL為基礎計算總行數的。這樣就會導致掃描行數高物理讀高查詢速度慢。優化方案就是總行數進行狀態歸檔,以歸檔+實時的方式展現出來
連表超過多,部分數據表是單獨的,但是不同部門的數據又有關聯性,領導要看全生命周期或者流程數據的情況下必須多表相連。這樣由於N個明細表導致笛卡兒積先不說,邏輯復雜連表多會消耗CPU,哪怕你查詢能500毫秒內顯示但是如果多人同時查就讓CPU超100%甚至做成鎖等待等堵塞。這個情況就是要用類似「雲計算」的分布式計算。通過觸發器、存儲過程等規定時間內吧業務表數據計算好並寫到展示表中,直接通過展示表進行關聯,這樣鎖表也於業務表無關,關聯表也能變少達到減少CPU消耗的目的。
iops與cpu佔比高導致資料庫癱瘓。第2點看出如果CPU高資料庫全SQL都會慢,IOPS也一樣。SQL慢會導致事務中的查詢慢,解放事務變慢了其他查詢就會鎖等待狀態變成堵塞。所以遇到大規模的查詢是否先查主鍵然後通過游標一個一個計算再進臨時表。這個是消耗時間和內存換CPU和IOPS的一個例子。反正伺服器資源最高怎樣開發應該是了解的,如何管制資源之間的平衡這個很重要。
舉個例子,部分MYSQL框架喜歡一次性把資料庫都導出來,然後減少子查詢,這個演算法針對有效的基礎數據這樣是可行的。針對業務數據應該沒人會用,但是基礎數據中也可能會存在海量的情況,比如坐標軌跡、省市區、電話號碼歸屬等。如果無腦應用這個框架會導致查詢起來很慢。
⑵ sql優化除了索引還有可以怎麼優化
1、主鍵就是聚集索引
2、只要建立索引就能顯著提高查詢速度
3、把所有需要提高查詢速度的欄位都加進聚集索引,以提高查詢速度
(四)其他書上沒有的索引使用經驗總結
1、用聚合索引比用不是聚合索引的主鍵速度快
2、用聚合索引比用一般的主鍵作order by時速度快,特別是在小數據量情況下
3、使用聚合索引內的時間段,搜索時間會按數據占整個數據表的百分比成比例減少,而無論聚合索引使用了多少個
4 、日期列不會因為有分秒的輸入而減慢查詢速度
(五)其他注意事項
1. 不要索引常用的小型表
2. 不要把社會保障號碼(SSN)或身份證號碼(ID)選作鍵
3. 不要用用戶的鍵
4. 不要索引 memo/notes 欄位和不要索引大型文本欄位(許多字元)
5. 使用系統生成的主鍵
二、改善SQL語句
1、Like語句是否屬於SARG取決於所使用的通配符的類型
2、or 會引起全表掃描
3、非操作符、函數引起的不滿足SARG形式的語句
4、IN 的作用相當與OR
⑶ 優化sql 語句的幾種方式
1.對查詢進行優化,應盡量避免全表掃描,首先應考慮在 where 及 order by 涉及的列上建立索引。
2.應盡量避免在 where 子句中對欄位進行 null 值判斷,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num is null
可以在num上設置默認值0,確保表中num列沒有null值,然後這樣查詢:
select id from t where num=0
3.應盡量避免在 where 子句中使用!=或<>操作符,否則將引擎放棄使用索引而進行全表掃描。
4.應盡量避免在 where 子句中使用 or 來連接條件,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num=10 or num=20
可以這樣查詢:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否則會導致全表掃描,如:
select id from t where num in(1,2,3)
對於連續的數值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查詢也將導致全表掃描:
select id from t where name like '%abc%'
7.應盡量避免在 where 子句中對欄位進行表達式操作,這將導致引擎放棄使用索引而進行全表掃描。如:
select id from t where num/2=100
應改為:
select id from t where num=100*2
8.應盡量避免在where子句中對欄位進行函數操作,這將導致引擎放棄使用索引而進行全表掃描。如:
select id from t where substring(name,1,3)='abc'--name以abc開頭的id
應改為:
select id from t where name like 'abc%'
9.不要在 where 子句中的「=」左邊進行函數、算術運算或其他表達式運算,否則系統將可能無法正確使用索引。
10.在使用索引欄位作為條件時,如果該索引是復合索引,那麼必須使用到該索引中的第一個欄位作為條件時才能保證系統使用該索引,否則該索引將不會被使用,並且應盡可能的讓欄位順序與索引順序相一致。
11.不要寫一些沒有意義的查詢,如需要生成一個空表結構:
select col1,col2 into #t from t where 1=0
這類代碼不會返回任何結果集,但是會消耗系統資源的,應改成這樣:
create table #t(...)
12.很多時候用 exists 代替 in 是一個好的選擇:
select num from a where num in(select num from b)
用下面的語句替換:
select num from a where exists(select 1 from b where num=a.num)
13.並不是所有索引對查詢都有效,SQL是根據表中數據來進行查詢優化的,當索引列有大量數據重復時,SQL查詢可能不會去利用索引,如一表中有欄位sex,male、female幾乎各一半,那麼即使在sex上建了索引也對查詢效率起不了作用。
14.索引並不是越多越好,索引固然可以提高相應的 select 的效率,但同時也降低了 insert 及 update 的效率,因為 insert 或 update 時有可能會重建索引,所以怎樣建索引需要慎重考慮,視具體情況而定。一個表的索引數最好不要超過6個,若太多則應考慮一些不常使用到的列上建的索引是否有必要。
15.盡量使用數字型欄位,若只含數值信息的欄位盡量不要設計為字元型,這會降低查詢和連接的性能,並會增加存儲開銷。這是因為引擎在處理查詢和連接時會逐個比較字元串中每一個字元,而對於數字型而言只需要比較一次就夠了。
16.盡可能的使用 varchar 代替 char ,因為首先變長欄位存儲空間小,可以節省存儲空間,其次對於查詢來說,在一個相對較小的欄位內搜索效率顯然要高些。
17.任何地方都不要使用 select * from t ,用具體的欄位列表代替「*」,不要返回用不到的任何欄位。
18.避免頻繁創建和刪除臨時表,以減少系統表資源的消耗。
19.臨時表並不是不可使用,適當地使用它們可以使某些常式更有效,例如,當需要重復引用大型表或常用表中的某個數據集時。但是,對於一次性事件,最好使用導出表。
20.在新建臨時表時,如果一次性插入數據量很大,那麼可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果數據量不大,為了緩和系統表的資源,應先create table,然後insert。
21.如果使用到了臨時表,在存儲過程的最後務必將所有的臨時表顯式刪除,先 truncate table ,然後 drop table ,這樣可以避免系統表的較長時間鎖定。
22.盡量避免使用游標,因為游標的效率較差,如果游標操作的數據超過1萬行,那麼就應該考慮改寫。
23.使用基於游標的方法或臨時表方法之前,應先尋找基於集的解決方案來解決問題,基於集的方法通常更有效。
24.與臨時表一樣,游標並不是不可使用。對小型數據集使用 FAST_FORWARD 游標通常要優於其他逐行處理方法,尤其是在必須引用幾個表才能獲得所需的數據時。
在結果集中包括「合計」的常式通常要比使用游標執行的速度快。如果開發時間允許,基於游標的方法和基於集的方法都可以嘗試一下,看哪一種方法的效果更好。
25.盡量避免大事務操作,提高系統並發能力。
26.盡量避免向客戶端返回大數據量,若數據量過大,應該考慮相應需求是否合理。
⑷ SQL語句的幾種優化方法
1、盡可能建立索引,包括條件列,連接列,外鍵列等。
2、盡可能讓where中的列順序與復合索引的列順序一致。
3、盡可能不要select *,而只列出自己需要的欄位列表。
4、盡可能減少子查詢的層數。
5、盡可能在子查詢中進行數據篩選 。
⑸ 怎樣進行sql資料庫的優化
1、資料庫空間是個概述,在sqlserver里,使用語句 exec sp_spaceused 'TableName' 這個語句來查。
⑹ 工作中常用的幾種sql優化技巧
例如:
1、盡可能建立索引,包括條件列,連接列,外鍵列等。
2、盡可能讓where中的列順序與復合索引的列順序一致。
3、盡可能不要select
*,而只列出自己需要的欄位列表。
4、盡可能減少子查詢的層數。
5、盡可能在子查詢中進行數據篩選
。
⑺ sql調優的幾種方式
你好,
SQL優化的一些方法
1.對查詢進行優化,應盡量避免全表掃描,首先應考慮在 where 及 order by 涉及的列上建立索引。
2.應盡量避免在 where 子句中對欄位進行 null 值判斷,否則將導致引擎放棄使用索引而進行全表掃描。
3.應盡量避免在 where 子句中使用!=或<>操作符,否則將引擎放棄使用索引而進行全表掃描。
4.應盡量避免在 where 子句中使用 or 來連接條件,否則將導致引擎放棄使用索引而進行全表掃描。
5.in 和 not in 也要慎用,否則會導致全表掃描,
6.下面的查詢也將導致全表掃描:
select id from t where name like '%abc%'
7.應盡量避免在 where 子句中對欄位進行表達式操作,這將導致引擎放棄使用索引而進行全表掃描。
8.應盡量避免在where子句中對欄位進行函數操作,這將導致引擎放棄使用索引而進行全表掃描。
9.不要在 where 子句中的「=」左邊進行函數、算術運算或其他表達式運算,否則系統將可能無法正確使用索引。
10.在使用索引欄位作為條件時,如果該索引是復合索引,那麼必須使用到該索引中的第一個欄位作為條件時才能保證系統使用該索引,否則該索引將不會被使用,並且應盡可能的讓欄位順序與索引順序相一致。
⑻ 列舉sql優化有哪些方式方法 博客園
我們要做到不但會寫SQL,還要做到寫出性能優良的SQL,以下為筆者學習、摘錄、並匯總部分資料與大家分享!
(1) 選擇最有效率的表名順序(只在基於規則的優化器中有效):
ORACLE 的解析器按照從右到左的順序處理FROM子句中的表名,FROM子句中寫在最後的表(基礎表 driving table)將被最先處理,在FROM子句中包含多個表的情況下,你必須選擇記錄條數最少的表作為基礎表。如果有3個以上的表連接查詢, 那就需要選擇交叉表(intersection table)作為基礎表, 交叉表是指那個被其他表所引用的表.
(2) WHERE子句中的連接順序.:
ORACLE採用自下而上的順序解析WHERE子句,根據這個原理,表之間的連接必須寫在其他WHERE條件之前, 那些可以過濾掉最大數量記錄的條件必須寫在WHERE子句的末尾.
(3) SELECT子句中避免使用 『 * 『:
ORACLE在解析的過程中, 會將'*' 依次轉換成所有的列名, 這個工作是通過查詢數據字典完成的, 這意味著將耗費更多的時間
(4) 減少訪問資料庫的次數:
ORACLE在內部執行了許多工作: 解析SQL語句, 估算索引的利用率, 綁定變數 , 讀數據塊等;
(5) 在SQL*Plus , SQL*Forms和Pro*C中重新設置ARRAYSIZE參數, 可以增加每次資料庫訪問的檢索數據量 ,建議值為200
(6) 使用DECODE函數來減少處理時間:
使用DECODE函數可以避免重復掃描相同記錄或重復連接相同的表.
(7) 整合簡單,無關聯的資料庫訪問:
如果你有幾個簡單的資料庫查詢語句,你可以把它們整合到一個查詢中(即使它們之間沒有關系)
(8) 刪除重復記錄:
最高效的刪除重復記錄方法 ( 因為使用了ROWID)例子:
DELETE FROM EMP E WHERE E.ROWID > (SELECT MIN(X.ROWID)
FROM EMP X WHERE X.EMP_NO = E.EMP_NO);
(9) 用TRUNCATE替代DELETE:
當刪除表中的記錄時,在通常情況下, 回滾段(rollback segments ) 用來存放可以被恢復的信息. 如果你沒有COMMIT事務,ORACLE會將數據恢復到刪除之前的狀態(准確地說是恢復到執行刪除命令之前的狀況) 而當運用TRUNCATE時, 回滾段不再存放任何可被恢復的信息.當命令運行後,數據不能被恢復.因此很少的資源被調用,執行時間也會很短. (譯者按: TRUNCATE只在刪除全表適用,TRUNCATE是DDL不是DML)
(10) 盡量多使用COMMIT:
只要有可能,在程序中盡量多使用COMMIT, 這樣程序的性能得到提高,需求也會因為COMMIT所釋放的資源而減少:
COMMIT所釋放的資源:
a. 回滾段上用於恢復數據的信息.
b. 被程序語句獲得的鎖
c. redo log buffer 中的空間
d. ORACLE為管理上述3種資源中的內部花費
(11) 用Where子句替換HAVING子句:
避免使用HAVING子句, HAVING 只會在檢索出所有記錄之後才對結果集進行過濾. 這個處理需要排序,總計等操作. 如果能通過WHERE子句限制記錄的數目,那就能減少這方面的開銷. (非oracle中)on、where、having這三個都可以加條件的子句中,on是最先執行,where次之,having最後,因為on是先把不符合條件的記錄過濾後才進行統計,它就可以減少中間運算要處理的數據,按理說應該速度是最快的,where也應該比having快點的,因為它過濾數據後才進行sum,在兩個表聯接時才用on的,所以在一個表的時候,就剩下where跟having比較了。在這單表查詢統計的情況下,如果要過濾的條件沒有涉及到要計算欄位,那它們的結果是一樣的,只是where可以使用rushmore技術,而having就不能,在速度上後者要慢如果要涉及到計算的欄位,就表示在沒計算之前,這個欄位的值是不確定的,根據上篇寫的工作流程,where的作用時間是在計算之前就完成的,而having就是在計算後才起作用的,所以在這種情況下,兩者的結果會不同。在多表聯接查詢時,on比where更早起作用。系統首先根據各個表之間的聯接條件,把多個表合成一個臨時表後,再由where進行過濾,然後再計算,計算完後再由having進行過濾。由此可見,要想過濾條件起到正確的作用,首先要明白這個條件應該在什麼時候起作用,然後再決定放在那裡
(12) 減少對表的查詢:
在含有子查詢的SQL語句中,要特別注意減少對表的查詢.例子:
SELECT TAB_NAME FROM TABLES WHERE (TAB_NAME,DB_VER) = ( SELECT
TAB_NAME,DB_VER FROM TAB_COLUMNS WHERE VERSION = 604)
(13) 通過內部函數提高SQL效率.:
復雜的SQL往往犧牲了執行效率. 能夠掌握上面的運用函數解決問題的方法在實際工作中是非常有意義的
(14) 使用表的別名(Alias):
當在SQL語句中連接多個表時, 請使用表的別名並把別名前綴於每個Column上.這樣一來,就可以減少解析的時間並減少那些由Column歧義引起的語法錯誤.
(15) 用EXISTS替代IN、用NOT EXISTS替代NOT IN:
在許多基於基礎表的查詢中,為了滿足一個條件,往往需要對另一個表進行聯接.在這種情況下, 使用EXISTS(或NOT EXISTS)通常將提高查詢的效率. 在子查詢中,NOT IN子句將執行一個內部的排序和合並. 無論在哪種情況下,NOT IN都是最低效的 (因為它對子查詢中的表執行了一個全表遍歷). 為了避免使用NOT IN ,我們可以把它改寫成外連接(Outer Joins)或NOT EXISTS.
例子:
(高效)SELECT * FROM EMP (基礎表) WHERE EMPNO > 0 AND EXISTS (SELECT 『X' FROM DEPT WHERE DEPT.DEPTNO = EMP.DEPTNO AND LOC = 『MELB')
(低效)SELECT * FROM EMP (基礎表) WHERE EMPNO > 0 AND DEPTNO IN(SELECT DEPTNO FROM DEPT WHERE LOC = 『MELB')
(16) 識別'低效執行'的SQL語句:
雖然目前各種關於SQL優化的圖形化工具層出不窮,但是寫出自己的SQL工具來解決問題始終是一個最好的方法:
SELECT EXECUTIONS , DISK_READS, BUFFER_GETS,
ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio,
ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run,
SQL_TEXT
FROM V$SQLAREA
WHERE EXECUTIONS>0
AND BUFFER_GETS > 0
AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8
ORDER BY 4 DESC;
⑼ 列舉sql優化有哪些方式
sql優化的方式有:
1、選擇最有效率的表名順序(只在基於規則的優化器中有效):
ORACLE 的解析器按照從右到左的順序處理FROM子句中的表名,FROM子句中寫在最後的表(基礎表 driving table)將被最先處理,在FROM子句中包含多個表的情況下,你必須選擇記錄條數最少的表作為基礎表。如果有3個以上的表連接查詢, 那就需要選擇交叉表(intersection table)作為基礎表, 交叉表是指那個被其他表所引用的表。
2、WHERE子句中的連接順序:
ORACLE採用自下而上的順序解析WHERE子句,根據這個原理,表之間的連接必須寫在其他WHERE條件之前, 那些可以過濾掉最大數量記錄的條件必須寫在WHERE子句的末尾。
3、SELECT子句中避免使用 『 * 『:
ORACLE在解析的過程中, 會將'*' 依次轉換成所有的列名, 這個工作是通過查詢數據字典完成的, 這意味著將耗費更多的時間 。
4、 減少訪問資料庫的次數:
ORACLE在內部執行了許多工作: 解析SQL語句, 估算索引的利用率, 綁定變數 , 讀數據塊等。
5、 在SQL*Plus , SQL*Forms和Pro*C中重新設置ARRAYSIZE參數, 可以增加每次資料庫訪問的檢索數據量 ,建議值為200 。
6、 使用DECODE函數來減少處理時間:
使用DECODE函數可以避免重復掃描相同記錄或重復連接相同的表。
7、整合簡單,無關聯的資料庫訪問:
如果你有幾個簡單的資料庫查詢語句,你可以把它們整合到一個查詢中(即使它們之間沒有關系)。