導航:首頁 > 使用方法 > 證明勾股定理常用的方法是

證明勾股定理常用的方法是

發布時間:2022-01-09 13:46:47

Ⅰ 勾股定理的3種證明方法

證法1】(梅文鼎證明)
作四個全等的直角三角形,設它們的兩條直角邊長分別為a、b ,斜邊長為c. 把它們拼成如圖那樣的一個多邊形,使D、E、F在一條直線上. 過C作AC的延長線交DF於點P.
∵ D、E、F在一條直線上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180°―90°= 90°
又∵ AB = BE = EG = GA = c,
∴ ABEG是一個邊長為c的正方形.
∴ ∠ABC + ∠CBE = 90°
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90°
即 ∠CBD= 90°
又∵ ∠BDE = 90°,∠BCP = 90°,
BC = BD = a.
∴ BDPC是一個邊長為a的正方形.
同理,HPFG是一個邊長為b的正方形.
設多邊形GHCBE的面積為S,則
,
∴ BDPC的面積也為S,HPFG的面積也為S由此可推出:a^2+b^2=c^2
【證法2】(項明達證明)
作兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a) ,斜邊長為c. 再做一個邊長為c的正方形. 把它們拼成如圖所示的多邊形,使E、A、C三點在一條直線上.
過點Q作QP‖BC,交AC於點P.
過點B作BM⊥PQ,垂足為M;再過點
F作FN⊥PQ,垂足為N.
∵ ∠BCA = 90°,QP‖BC,
∴ ∠MPC = 90°,
∵ BM⊥PQ,
∴ ∠BMP = 90°,
∴ BCPM是一個矩形,即∠MBC = 90°.
∵ ∠QBM + ∠MBA = ∠QBA = °,
∠ABC + ∠MBA = ∠MBC = 90°,
∴ ∠QBM = ∠ABC,
又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA.
同理可證RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2
【證法3】(趙浩傑證明)
作兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a) ,斜邊長為c. 再做一個邊長為c的正方形. 把它們拼成如圖所示的多邊形.
分別以CF,AE為邊長做正方形FCJI和AEIG,
∵EF=DF-DE=b-a,EI=b,
∴FI=a,
∴G,I,J在同一直線上,
∵CJ=CF=a,CB=CD=c,
∠CJB = ∠CFD = 90°,
∴RtΔCJB ≌ RtΔCFD ,
同理,RtΔABG ≌ RtΔADE,
∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE
∴∠ABG = ∠BCJ,
∵∠BCJ +∠CBJ= 90°,
∴∠ABG +∠CBJ= 90°,
∵∠ABC= 90°,
∴G,B,I,J在同一直線上,
所以a^2+b^2=c^2
【證法4】(歐幾里得證明)
作三個邊長分別為a、b、c的正方形,把它們拼成如圖所示形狀,使H、C、B三點在一條直線上,連結
BF、CD. 過C作CL⊥DE,
交AB於點M,交DE於點L.
∵ AF = AC,AB = AD,
∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面積等於,
ΔGAD的面積等於矩形ADLM
的面積的一半,
∴ 矩形ADLM的面積 =.
同理可證,矩形MLEB的面積 =.
∵ 正方形ADEB的面積
= 矩形ADLM的面積 + 矩形MLEB的面積
∴ 即a的平方+b的平方=c的平方
【證法5】歐幾里得的證法
《幾何原本》中的證明
在歐幾里得的《幾何原本》一書中提出勾股定理由以下證明後可成立。 設△ABC為一直角三角形,其中A為直角。從A點劃一直線至對邊,使其垂直於對邊上的正方形。此線把對邊上的正方形一分為二,其面積分別與其餘兩個正方形相等。
在正式的證明中,我們需要四個輔助定理如下:
如果兩個三角形有兩組對應邊和這兩組邊所夾的角相等,則兩三角形全等。(SAS定理) 三角形面積是任一同底同高之平行四邊形面積的一半。 任意一個正方形的面積等於其二邊長的乘積。 任意一個四方形的面積等於其二邊長的乘積(據輔助定理3)。 證明的概念為:把上方的兩個正方形轉換成兩個同等面積的平行四邊形,再旋轉並轉換成下方的兩個同等面積的長方形。
其證明如下:
設△ABC為一直角三角形,其直角為CAB。 其邊為BC、AB、和CA,依序繪成四方形CBDE、BAGF和ACIH。 畫出過點A之BD、CE的平行線。此線將分別與BC和DE直角相交於K、L。 分別連接CF、AD,形成兩個三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是線性對應的,同理可證B、A和H。 ∠CBD和∠FBA皆為直角,所以∠ABD等於∠FBC。 因為 AB 和 BD 分別等於 FB 和 BC,所以△ABD 必須相等於△FBC。 因為 A 與 K 和 L是線性對應的,所以四方形 BDLK 必須二倍面積於△ABD。 因為C、A和G有共同線性,所以正方形BAGF必須二倍面積於△FBC。 因此四邊形 BDLK 必須有相同的面積 BAGF = AB^2。 同理可證,四邊形 CKLE 必須有相同的面積 ACIH = AC^2。 把這兩個結果相加, AB^2+ AC^2; = BD×BK + KL×KC 由於BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由於CBDE是個正方形,因此AB^2 + AC^2= BC^2。 此證明是於歐幾里得《幾何原本》一書第1.47節所提出的

Ⅱ 勾股定理有幾種證明方法

勾股定理的證明有上百種證明方法,下面例句最經典的中國方法:

畫兩個邊長為(a+b)的正方形,如圖,其中a、b為直角邊,c為斜邊。這兩個正方形全等,故面積相等。
左圖與右圖各有四個與原直角三角形全等的三角形,左右四個三角形面積之和必相等。從左右兩圖中都把四個三角形去掉,圖形剩下部分的面積必相等。左圖剩下兩個正方形,分別以a、b為邊。右圖剩下以c為邊的正方形。於是
a^2+b^2=c^2。
這就是我們幾何教科書中所介紹的方法。既直觀又簡單,任何人都看得懂。

Ⅲ 最簡單的勾股定理的證明方法是什麼

簡單的勾股定理的證明方法如下:

拓展資料:

勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。

勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。在中國,商朝時期的商高提出了「勾三股四玄五」的勾股定理的特例。在西方,最早提出並證明此定理的為公元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等於兩直角邊平方之和。



參考資料:勾股定理_網路

Ⅳ 勾股定理的十六種證明方法

加菲爾德證法、加菲爾德證法變式、青朱出入圖證法、歐幾里得證法、畢達哥拉斯證法、華蘅芳證法、趙爽弦圖證法、百牛定理證法、商高定理證法、商高證法、劉徽證法、縐元智證法、梅文鼎證法、向明達證法、楊作梅證法、李銳證法

例,如下圖:

設△ABC為一直角三角形,其中A為直角。從A點劃一直線至對邊,使其垂直於對邊。延長此線把對邊上的正方形一分為二,其面積分別與其餘兩個正方形相等。

設△ABC為一直角三角形,其直角為∠CAB。

其邊為BC、AB和CA,依序繪成四方形CBDE、BAGF和ACIH。

畫出過點A之BD、CE的平行線,分別垂直BC和DE於K、L。

分別連接CF、AD,形成△BCF、△BDA。

∠CAB和∠BAG都是直角,因此C、A和G共線,同理可證B、A和H共線。

∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

因為AB=FB,BD=BC,所以△ABD≌△FBC。

因為A與K和L在同一直線上,所以四邊形BDLK=2△ABD。

因為C、A和G在同一直線上,所以正方形BAGF=2△FBC。

因此四邊形BDLK=BAGF=AB²。

同理可證,四邊形CKLE=ACIH=AC²。

把這兩個結果相加,AB²+AC²=BD×BK+KL×KC

由於BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

由於CBDE是個正方形,因此AB²+AC²=BC²,即a²+b²=c²。

(4)證明勾股定理常用的方法是擴展閱讀


性質:

1、勾股定理的證明是論證幾何的發端;

2、勾股定理是歷史上第一個把數與形聯系起來的定理,即它是第一個把幾何與代數聯系起來的定理;

3、勾股定理導致了無理數的發現,引起第一次數學危機,大大加深了人們對數的理解;

4、勾股定理是歷史上第—個給出了完全解答的不定方程,它引出了費馬大定理;

5、勾股定理是歐氏幾何的基礎定理,並有巨大的實用價值,這條定理不僅在幾何學中是一顆光彩奪目的明珠,被譽為「幾何學的基石」,而且在高等數學和其他科學領域也有著廣泛的應用。1971年5月15日,尼加拉瓜發行了一套題為「改變世界面貌的十個數學公式」郵票,這十個數學公式由著名數學家選出的,勾股定理是其中之首。



Ⅳ 證明勾股定理的方法(越多越好)

加油!!
中國最早的一部數學著作——《周髀算經》的開頭,記載著一段周公向商高請教數學知識的對話:
周公問:「我聽說您對數學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那麼怎樣才能得到關於天地得到數據呢?」
商高回答說:「數的產生來源於對方和圓這些形體餓認識。其中有一條原理:當直角三角形『矩』得到的一條直角邊『勾』等於3,另一條直角邊『股』等於4的時候,那麼它的斜邊『弦』就必定是5。這個原理是大禹在治水的時候就總結出來的呵。」
從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經發現並應用勾股定理這一重要懂得數學原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等於斜邊的平方。如圖所示,我們

圖1 直角三角形

用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來表示斜邊,則可得:

勾2+股2=弦2

亦即:

a2+b2=c2

勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數學家兼哲學家畢達哥拉斯於公元前550年首先發現的。其實,我國古代得到人民對這一數學定理的發現和應用,遠比畢達哥拉斯早得多。如果說大禹治水因年代久遠而無法確切考證的話,那麼周公與商高的對話則可以確定在公元前1100年左右的西周時期,比畢達哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個應用特例(32+42=52)。所以現在數學界把它稱為勾股定理,應該是非常恰當的。
在稍後一點的《九章算術一書》中,勾股定理得到了更加規范的一般性表達。書中的《勾股章》說;「把勾和股分別自乘,然後把它們的積加起來,再進行開方,便可以得到弦。」把這段話列成算式,即為:

弦=(勾2+股2)(1/2)

亦即:

c=(a2+b2)(1/2)

中國古代的數學家們不僅很早就發現並應用勾股定理,而且很早就嘗試對勾股定理作理論的證明。最早對勾股定理進行證明的,是三國時期吳國的數學家趙爽。趙爽創制了一幅「勾股圓方圖」,用形數結合得到方法,給出了勾股定理的詳細證明。在這幅「勾股圓方圖」中,以弦為邊長得到正方形ABDE是由4個相等的直角三角形再加上中間的那個小正方形組成的。每個直角三角形的面積為ab/2;中間懂得小正方形邊長為b-a,則面積為(b-a)2。於是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化簡後便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

圖2 勾股圓方圖

趙爽的這個證明可謂別具匠心,極富創新意識。他用幾何圖形的截、割、拼、補來證明代數式之間的恆等關系,既具嚴密性,又具直觀性,為中國古代以形證數、形數統一、代數和幾何緊密結合、互不可分的獨特風格樹立了一個典範。以後的數學家大多繼承了這一風格並且代有發展。例如稍後一點的劉徽在證明勾股定理時也是用的以形證數的方法,只是具體圖形的分合移補略有不同而已。
中國古代數學家們對於勾股定理的發現和證明,在世界數學史上具有獨特的貢獻和地位。尤其是其中體現出來的「形數統一」的思想方法,更具有科學創新的重大意義。事實上,「形數統一」的思想方法正是數學發展的一個極其重要的條件。正如當代中國數學家吳文俊所說:「在中國的傳統數學中,數量關系與空間形式往往是形影不離地並肩發展著的......十七世紀笛卡兒解析幾何的發明,正是中國這種傳統思想與方法在幾百年停頓後的重現與繼續。」

Ⅵ 勾股定理的三種證明方法是什麼啊

一,畢達哥拉斯證法
二,趙爽證法
三,將直角三角形與其它三角形拼成直角梯形,然後就根據梯形面積證出勾股定理.

Ⅶ 勾股定理的證明方法 最好帶圖 5種就夠

勾股定理
[編輯本段]
在初二我們將初步學習勾股定理.
勾股定理又叫商高定理、畢氏定理,或稱畢達哥拉斯定理(Pythagoras Theorem).

在一個直角三角形中,斜邊邊長的平方等於兩條直角邊邊長平方之和。如果直角三角形兩直角邊分別為a、b,斜邊為c,那麼a的平方+b的平方=c的平方;,即α*α+b*b=c*c
推廣:把指數改為n時,等號變為小於號
據考證,人類對這條定理的認識,少說也超過 4000 年

勾股數:是指能組成a^+b^=c^的三個正整數稱為勾股數.

實際上,在更早期的人類活動中,人們就已經認識到這一定理的某些特例。除上述兩個例子外,據說古埃及人也曾利用「勾三股四弦五」的法則來確定直角。但是,這一傳說引起過許多數學史家的懷疑。比如說,美國的數學史家M·克萊因教授曾經指出:「我們也不知道埃及人是否認識到畢達哥拉斯定理。我們知道他們有拉繩人(測量員),但所傳他們在繩上打結,把全長分成長度為3、4、5的三段,然後用來形成直角三角形之說,則從未在任何文件上得證實。」不過,考古學家們發現了幾塊大約完成於公元前2000年左右的古巴比倫的泥板書,據專家們考證,其中一塊上面刻有如下問題:「一根長度為 30個單位的棍子直立在牆上,當其上端滑下6個單位時,請問其下端離開牆角有多遠?」這是一個三邊為為3:4:5三角形的特殊例子;專家們還發現,在另一塊泥板上面刻著一個奇特的數表,表中共刻有四列十五行數字,這是一個勾股數表:最右邊一列為從1到15的序號,而左邊三列則分別是股、勾、弦的數值,一共記載著15組勾股數。這說明,勾股定理實際上早已進入了人類知識的寶庫。

勾股定理是幾何學中的明珠,它充滿魅力,千百年來,人們對它的證明趨之若鶩,其中有著名的數學家、畫家,也有業余數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單又實用,更容易吸引人,才使它成百次地反復被人炒作,反復被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。(※關於勾股定理的詳細證明,由於證明過程較為繁雜,不予收錄。)

人們對勾股定理感興趣的原因還在於它可以作推廣。

歐幾里得在他的《幾何原本》中給出了勾股定理的推廣定理:「直角三角形斜邊上的一個直邊形,其面積為兩直角邊上兩個與之相似的直邊形面積之和」。

從上面這一定理可以推出下面的定理:「以直角三角形的三邊為直徑作圓,則以斜邊為直徑所作圓的面積等於以兩直角邊為直徑所作兩圓的面積和」。

勾股定理還可以推廣到空間:以直角三角形的三邊為對應棱作相似多面體,則斜邊上的多面體的表面積等於直角邊上兩個多面體表面積之和。

若以直角三角形的三邊為直徑分別作球,則斜邊上的球的表面積等於兩直角邊上所作二球表面積之和。

如此等等。

Ⅷ 勾股定理的最簡單的證明方法是什麼

簡單的勾股定理的證明方法如下:

拓展資料:

勾股定理的使用方法

1、確保三角形是直角三角形。 勾股定理只適用於直角三角形中,所以,在應用定理之前,你需要先確定三角形是否是直角三角形,這一點非常重要。幸好,區分直接三角形和別的三角形的方法只有一個,那就是看一個三角形中是否有一個90度的角。

2、確定變數a,b,c對應的三角形的邊。在勾股定理中,a,b表示直角三角形的兩條直角邊,而c用來表示斜邊,即直角對應的那條最長的邊。所以,先給兩條直角邊分別標註上a,b(具體的對應關系沒有要求),而斜邊標註上c。

3、確定你所要求的邊。使用勾股定理可以求出直角三角形的任意一條邊的長度,但前提是知道另外兩條邊的長度。先確定哪一條邊的長度是未知的——a,b或者c。

4、代入。將兩條已知邊的長度帶入到公式a2 + b2 = c2中,其中a和b對應的是兩直角邊的長度,而c代表斜邊長度。在上面的例子中,我們知道一條直角邊和斜邊的長度(3和5),然後將3和5代入到公式中,有32 + b2 = 2。

5、計算平方。首先,計算兩條已知邊長度的平方值。或者,你也可以先不計算出來,然後保留平方,帶到式子中直接計算平方和。在上述例子中,3和5的平方分別是9和25,所以方程可以改寫為9 + b2 = 25。

6、將未知變數移到等號一邊。如果有必要的話,運用基本的代數操作,將未知變數移動到等號一側,而將已知變數移動到等號的另一側。如果你要求的是斜邊長,那麼就不需要再移動變數了。在上述例子中,方程式是9 + b2 = 25。兩邊同時減去9,等式變為b2= 16。

7、求開方。現在等式兩邊一邊是數字,另一邊是變數,然後同時求兩邊的平方根。在上述例子中b2 = 16,兩邊同時求平方根,有b = 4。因此,未知邊的長度就是4。

Ⅸ 有哪些證明勾股定理的方法

還有的方法就是等面積法,就是利用圖形的變化來證明;
也可以利用相似三角形來證明勾股定理。
還有傳說中畢達哥拉斯的證法和美國第20任總統茄菲爾德的證法。
勾股定理在我國,把直角三角形的兩直角邊的平方和等於斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達哥拉斯定理或畢氏定理。數學公式中常寫作a^2+b^2=c^2

閱讀全文

與證明勾股定理常用的方法是相關的資料

熱點內容
燃燒不穩定的解決方法 瀏覽:293
手有點麻一招解決方法 瀏覽:463
快速推理解決問題方法 瀏覽:654
空間向量研究方法 瀏覽:562
床車折疊方法視頻 瀏覽:301
聲光報警安裝接線方法 瀏覽:79
電阻器的標稱值有哪些方法 瀏覽:607
感官動詞教學方法 瀏覽:684
怎麼挖紅薯的方法 瀏覽:659
廢舊卡片手機架自己製作方法 瀏覽:165
水質檢測方法標准 瀏覽:808
金魚苗怎麼喂養方法 瀏覽:596
陰將陽江日計算方法 瀏覽:540
哪些方法可以減肚子 瀏覽:97
老式洗衣機怎麼清洗方法教程 瀏覽:300
各種鋼管的重量計算方法 瀏覽:453
蘋果手機音量哪裡設置方法 瀏覽:849
小孩子身上起斑有什麼治療的方法 瀏覽:223
融安滑皮金桔食用方法 瀏覽:969
老人腳裂怎麼辦最有效方法 瀏覽:973