導航:首頁 > 使用方法 > 常用的基因分型的方法

常用的基因分型的方法

發布時間:2022-01-09 00:13:12

如何用普通的pcr做基因分型……還有原理是什麼十分感謝!!!

設計3條引物,其中一條公用引物,另外兩個引物跨在基因突變的位置就行了,PCR出來的結果直接對比就行了,不過還是建議用QPCR,taqman探針好一點,更准確,普通PCR做出來效果不會很明顯的

⑵ 基因分型方法有哪些比較常見的是PCR-RFLP,還有其他方法嗎

AFLP、SSCP、SNP、測序、RealTime PCR
比較老的還有RAPD

⑶ 基因診斷的方法有哪幾種

基因診斷(gene diagnosis)是以探測基因的存在,分析基因的類型和缺陷及其表達功能是否正常,從而達到診斷疾病的一種方法。它是繼形態學、生物化學和免疫學診斷之後的第四代診斷技術,它的誕生與發展得益於分子生物學理論和技術的迅速發展。

常用基因診斷技術:
一、Southern印跡法(Southern blot)

基本原理是:硝酸纖維膜或尼龍濾膜對單鏈DNA的吸附能力很強,當電泳後凝膠經過DNA變性處理,覆以上述濾膜,再於其上方壓上多層乾燥的吸水紙,藉助它對深鹽溶液的上吸作用,凝膠上的單鏈DNA將轉移到濾膜上。轉移是原位的,即DNA片段的位置保持不變。轉移結束後,經過80℃烘烤的DNA,將原位地固定於膜上。
當含有特定基因片段已原位轉移到膜上後,即可與同位素標記了的探針進行雜交,並將雜交的信號顯示出來。雜交通常在塑料袋中進行,袋內放置上述雜交濾膜,加入含有變性後探針的雜交溶液後,在一定溫度下讓單鏈探針DNA與固定於膜上的單鏈基因DNA分子按鹼基到互補原理充分結合。結合是特異的,例如只有β珠蛋白基因DNA才能結合上β珠蛋白的探針。雜交後,洗去膜上的未組合的探針,將Ⅹ線膠片覆於膜上,在暗盒中日光進行放射自顯影。結合了同位素標記探針的DNA片段所在部位將顯示黑色的雜交帶,基因的缺失或突變則可能導致帶的缺失或位置改變。

二、聚合酶鏈反應

近年來,基因分析和基因工程技術有了革命性的突破,這主要歸功於聚合酶鏈反應(polymerase chain reaction,PCR)的發展和應用。應用PCR技術可以使特定的基因或DNA片段在短短的2-3小時內體外擴增數十萬至百萬倍。擴增的片段可以直接通過電泳觀察,也可用於進一步的分析。這樣,少量的單拷貝基因不需通過同位素提高其敏感性來觀察,而通過擴增至百萬倍後直接觀察到,而且原先需要一、二周才能作出的診斷可以縮短至數小時。

三、擴增片段長度多態性

小衛星DNA和微衛星DNA的長度多態性可以通過PCR擴增後電泳來檢出,並用於致病基因的連鎖分析,這種診斷方法稱為擴增片段長度多態性(amplified fragment length polymorphism,Amp-FLP)連鎖分析法。PCR擴增後,產物即等位片段之間的差別有時只有幾個核苷酸,故需用聚丙烯醯胺凝膠電泳分離鑒定。此法多用於突變性質不明的連鎖分析.

四、等位基因的特異寡核苷酸探針診斷法

當基因的突變部位和性質已完全明了時,可以合成等基因特異的寡核苷酸探針(allele-specific oligonucleotide,ASO)用同位素或非同位素標記進行診斷。探針通常為長20bp左右的核苷酸。用於探測點突變時一般需要合成兩種探針,與正常基因序列完全一致,能與之穩定地雜交,但不能與突變基因序列雜交;另一種與突變基因序列一致,能與突變基因序列穩定雜交,但不能與正常基因序列穩定雜交,這樣,就可以把只有一個鹼基發生了突變的基因區別開來.

PCR可結合ASO,即PCR-ASO技術,即先將含有突變點的基因有關片段進行體外擴增,然後再與ASO探針作點雜交,這樣大大簡化了方法,節約了時間,而且只要極少量的基因組DNA就可進行。

五、單鏈構象多態性診斷法

單鏈構象多態性(signle strand conformation polymorphism,SSCP)是指單鏈DNA由於鹼基序列的不同可引起構象差異,這種差異將造成相同或相近長度的單鏈DNA電泳遷移率不同,從而可用於DNA中單個鹼基的替代、微小的缺失或手稿的檢測。用SSCP法檢查基因突變時,通常在疑有突變的DNA片段附近設計一對引物進行PCR擴增,然後將擴增物用甲醯胺等變性,並在聚丙烯醯胺凝膠中電泳,突變所引起的DNA構象差異將表現為電泳帶位置的差異,從而可據之作出診斷。

⑷ 什麼是基因分型

■什麼是基因?
含特定遺傳信息的核苷酸序列,是遺傳物質的最小功能單位。除某些病毒的基因由核糖核酸(RNA)構成以外,多數生物的基因由脫氧核糖核酸(DNA)構成,並在染色體上作線狀排列。基因一詞通常指染色體基因。在真核生物中,由於染色體都在細胞核內,所以又稱為核基因。位於線粒體和葉綠體等細胞器中的基因則稱為染色體外基因、核外基因或細胞質基因,也可以分別稱為線粒體基因、質粒和葉綠體基因。
在通常的二倍體的細胞或個體中,能維持配子或配子體正常功能的最低數目的一套染色體稱為染色體組或基因組,一個基因組中包含一整套基因。相應的全部細胞質基因構成一個細胞質基因組,其中包括線粒體基因組和葉綠體基因組等。原核生物的基因組是一個單純的DNA或RNA分子,因此又稱為基因帶,通常也稱為它的染色體。
基因在染色體上的位置稱為座位,每個基因都有自己特定的座位。凡是在同源染色體上占據相同座位的基因都稱為等位基因。在自然群體中往往有一種佔多數的(因此常被視為正常的)等位基因,稱為野生型基因;同一座位上的其他等位基因一般都直接或間接地由野生型基因通過突變產生,相對於野生型基因,稱它們為突變型基因。在二倍體的細胞或個體內有兩個同源染色體,所以每一個座位上有兩個等位基因。如果這兩個等位基因是相同的,那麼就這個基因座位來講,這種細胞或個體稱為純合體;如果這兩個等位基因是不同的,就稱為雜合體。在雜合體中,兩個不同的等位基因往往只表現一個基因的性狀,這個基因稱為顯性基因,另一個基因則稱為隱性基因。在二倍體的生物群體中等位基因往往不止兩個,兩個以上的等位基因稱為復等位基因。不過有一部分早期認為是屬於復等位基因的基因,實際上並不是真正的等位,而是在功能上密切相關、在位置上又鄰接的幾個基因,所以把它們另稱為擬等位基因。某些表型效應差異極少的復等位基因的存在很容易被忽視,通過特殊的遺傳學分析可以分辨出存在於野生群體中的幾個等位基因。這種從性狀上難以區分的復等位基因稱為同等位基因。許多編碼同工酶的基因也是同等位基因。
屬於同一染色體的基因構成一個連鎖群(見連鎖和交換)。基因在染色體上的位置一般並不反映它們在生理功能上的性質和關系,但它們的位置和排列也不完全是隨機的。在細菌中編碼同一生物合成途徑中有關酶的一系列基因常排列在一起,構成一個操縱子(見基因調控);在人、果蠅和小鼠等不同的生物中,也常發現在作用上有關的幾個基因排列在一起,構成一個基因復合體或基因簇或者稱為一個擬等位基因系列或復合基因。
功能、類別和數目 到目前為止在果蠅中已經發現的基因不下於1000個, 在大腸桿菌中已經定位的基因大約也有1000個,由基因決定的性狀雖然千差萬別,但是許多基因的原初功能卻基本相同。
功能 1945年G.W.比德爾通過對脈孢菌的研究,提出了一個基因一種酶假設,認為基因的原初功能都是決定蛋白質的一級結構(即編碼組成肽鏈的氨基酸序列)。這一假設在50年代得到充分的驗證。
類別 60年代初F.雅各布和J.莫諾發現了調節基因。把基因區分為結構基因和調節基因是著眼於這些基因所編碼的蛋白質的作用:凡是編碼酶蛋白、血紅蛋白、膠原蛋白或晶體蛋白等蛋白質的基因都稱為結構基因;凡是編碼阻遏或激活結構基因轉錄的蛋白質的基因都稱為調節基因。但是從基因的原初功能這一角度來看,它們都是編碼蛋白質。根據原初功能(即基因的產物)基因可分為:①編碼蛋白質的基因。包括編碼酶和結構蛋白的結構基因以及編碼作用於結構基因的阻遏蛋白或激活蛋白的調節基因。②沒有翻譯產物的基因。轉錄成為RNA以後不再翻譯成為蛋白質的轉移核糖核酸(tRNA)基因和核糖體核酸(rRNA)基因:③不轉錄的DNA區段。如啟動區、操縱基因等等。前者是轉錄時RNA多聚酶開始和DNA結合的部位;後者是阻遏蛋白或激活蛋白和DNA結合的部位。已經發現在果蠅中有影響發育過程的各種時空關系的突變型,控制時空關系的基因有時序基因 、格局基因 、選擇基因等(見發生遺傳學)。
一個生物體內的各個基因的作用時間常不相同,有一部分基因在復制前轉錄,稱為早期基因;有一部分基因在復制後轉錄,稱為晚期基因。一個基因發生突變而使幾種看來沒有關系的性狀同時改變,這個基因就稱為多效基因。
數目 不同生物的基因數目有很大差異,已經確知RNA噬菌體MS2隻有3個基因,而哺乳動物的每一細胞中至少有100萬個基因。但其中極大部分為重復序列,而非重復的序列中,編碼肽鏈的基因估計不超過10萬個。除了單純的重復基因外,還有一些結構和功能都相似的為數眾多的基因,它們往往緊密連鎖,構成所謂基因復合體或叫做基因家族。
相互作用
生物的一切表型都是蛋白質活性的表現。換句話說,生物的各種性狀幾乎都是基因相互作用的結果。所謂相互作用,一般都是代謝產物的相互作用,只有少數情況涉及基因直接產物,即蛋白質之間的相互作用。
非等位基因的相互作用 依據非等位基因相互作用的性質可以將它們歸納為:
①互補基因。若干非等位基因只有同時存在時才出現某一性狀,其中任何一個發生突變時都會導致同一突變型性狀,這些基因稱為互補基因。
②異位顯性基因。影響同一性狀的兩個非等位基因在一起時,得以表現性狀的基因稱為異位顯性基因或稱上位基因。
③累加基因。對於同一性狀的表型來講,幾個非等位基因中的每一個都只有部分的影響,這樣的幾個基因稱為累加基因或多基因。在累加基因中每一個基因只有較小的一部分表型效應,所以又稱為微效基因。相對於微效基因來講,由單個基因決定某一性狀的基因稱為主效基因。
④修飾基因。本身具有或者沒有任何錶型效應,可是和另一突變基因同時存在便會影響另一基因的表現程度的基因。如果本身具有同一表型效應則和累加基因沒有區別。
⑤抑制基因。一個基因發生突變後使另一突變基因的表型效應消失而恢復野生型表型,稱前一基因為後一基因的抑制基因。如果前一基因本身具有表型效應則抑制基因和異位顯性基因沒有區別。
⑥調節基因。一個基因如果對另一個或幾個基因具有阻遏作用或激活作用則稱該基因為調節基因。調節基因通過對被調節的結構基因轉錄的控制而發揮作用。具有阻遏作用的調節基因不同於抑制基因,因為抑制基因作用於突變基因而且本身就是突變基因,調節基因則作用於野生型基因而且本身也是野生型基因。
⑦微效多基因。影響同一性狀的基因為數較多,以致無法在雜交子代中明顯地區分它們的類型,這些基因統稱為微效多基因或稱多基因。
⑧背景基因型。從理論上看,任何一個基因的作用都要受到同一細胞中其他基因的影響。除了人們正在研究的少數基因以外,其餘的全部基因構成所謂的背景基因型或稱殘余基因型。
等位基因的相互作用 1932年H.J.馬勒依據突變型基因與野生型等位基因的關系歸納為無效基因、亞效基因、超效基因、新效基因和反效基因。
①無效基因。不能產生野生型表型的、完全失去活性的突變型基因。一般的無效基因卻能通過回復突變而成為野生型基因。
②亞效基因。表型效應在性質上相同於野生型,可是在程度上次於野生型的突變型基因。
③超效基因。表型效應超過野生型等位基因的突變型基因。
④新效基因。產生野生型等位基因所沒有的新性狀的突變型基因。
⑤反效基因。作用和野生型等位基因相對抗的突變型基因。
⑥鑲嵌顯性。對於某一性狀來講,一個等位基因影響身體的一個部分,另一等位基因則影響身體的另一部分,而在雜合體中兩個部分都受到影響的現象稱為鑲嵌顯性。
基因和環境因素的相互作用 基因作用的表現離不開內在的和外在的環境的影響。在具有特定基因的一群個體中,表現該基因性狀的個體的百分數稱為外顯率;在具有特定基因而又表現該一性狀的個體中,對於該一性狀的表現程度稱為表現度。外顯率和表現度都受內在環境和外在環境的影響。
內在環境 指生物的性別、年齡等條件以及背景基因型。
①性別。性別對於基因作用的影響實際上是性激素對基因作用的影響。性激素為基因所控制,所以實質上這些都是基因相互作用的結果。
②年齡。人類中各個基因顯示它的表型的年齡有很大的區別。
③背景基因型。通過選擇,可以改變動植物品系的某一遺傳性狀的外顯率和表現度,說明一些基因的作用往往受到一系列修飾基因或者背景基因型的影響。
由於背景基因型的差異而造成的影響,在下述3種情況中可以減低到最低限度:由高度近交得來的純系;一卵雙生兒;無性繁殖系(包括某些高等植物的無性繁殖系、微生物的無性繁殖系以及高等動物的細胞株)。用這些體系作為實驗系統,可以更為明確地顯示環境因素的影響,更為確切地說明某一基因的作用。雙生兒法在人類遺傳學中的應用及純系生物在遺傳學和許多生物學研究中的應用都是根據這一原理。
外在環境 ①溫度。溫度敏感突變型只能在某些溫度中表現出突變型的性狀,對於一般的突變型來說,溫度對於基因的作用也有程度不等的影響。②營養。家兔脂肪的黃色決定於基因y的純合狀態以及食物中的葉黃素的存在。如果食物中不含有葉黃素,那麼yy純合體的脂肪也並不呈黃色。y基因的作用顯然和葉黃素的同化有關。
演化 就細胞中DNA的含量來看,一般愈是低等的生物含量愈低,愈是高等的生物含量愈高。就基因的數量和種類來講,一般愈是低等的生物愈少,愈是高等的生物愈多。DNA含量和基因數的增加與生理功能的逐漸完備是密切相關的。
基因最初是一個抽象的符號,後來證實它是在染色體上佔有一定位置的遺傳的功能單位。大腸桿菌乳糖操縱子中的基因的分離和離體條件下轉錄的實現進一步說明基因是實體。今已可以在試管中對基因進行改造(見重組DNA技術)甚至人工合成基因。對基因的結構、功能、重組、突變以及基因表達的調控和相互作用的研究始終是遺傳學研究的中心課題。

■什麼是基因治療?
在認識和熟練使用遺傳生物學單位基因的新近進展後,它已經為科學家去改變病人的遺傳物質,以達到治病防病的目的邁向新的一步。基因治療的一個主要目標是用一種缺陷基因的健康復制去提供給細胞。這一方法是革命性的:醫生試圖通過改變病人細胞的遺傳物質,來代替給病人治療或控制遺傳疾病的葯物,最終達到醫治病人疾病的根本目的。
幾百個主要健康問題受到基因功能的影響。在將來,基因治療能被用於醫治許多這類疾病。理論上講為了防止遺傳缺陷傳給下一代,還能用於改變胚胎細胞(蛋或種子)。然而,胚胎家系基因治療的可能性受到困難的倫理道德、社會問題和技術障礙牽制。
基因治療還作為葯物輸送系統使用,為了做到這點,產生有用物質的基因將被嵌進病人細胞的DNA中。例如,在血管外科中,產生抗凝血因子的基因能被嵌入血管細胞家系的DNA中,有助於防止血栓的形成。許多其它疾病可使用這一般方法治療來提高本身的可靠性。
當醫療治療提高到分子水平時,葯物輸送使用基因治療能節約時間減低成本。為收集大量的基因蛋白產品、提純產品、合成葯物和對病人的管理縮短了時間減少了復雜的工藝加工。
然而,基因治療仍是處於極端新的和高度的實驗階段。被批準的試驗數量是小的,今天只有少量的病人曾得到過治療。
目前基因治療實驗的基本步驟
在目前的某些實驗中,從病人的血液或骨髓中取出細胞,並在加速繁殖的實驗條件下生長。然後,把需要的基因藉助於不起作用的病毒嵌進細胞。選擇出獲得成功改變的細胞再加速繁殖,再回到病人的體內。另一種情況,脂質體(脂肪顆粒)或不起作用的病毒可被用於把基因直接輸進病人體內細胞。
基因治療的基本要求
基因治療的潛力
基因治療為治癒人類疾病提供了新的範例。不是通過制劑與基因產品或自身基因產品相互作用來改變疾病的表現型,而是基因治療理論上能修正特殊基因,導致沿著簡單化的管理治癒疾病。開始基因治療是針對治療遺傳性疾病,但目前對廣泛性的疾病進行研究,包括癌症、外周血管疾病、關節炎、神經變性疾病和其它後天疾病。
基因確認和克隆
即使基因治療戰略性的范圍是相當多樣化,成功的基因治療也需要一定的關鍵的基本要素。其中最重要的要素是必須確認和克隆有關的基因。直到人類基因組計劃完成,基因的有效度才被利用。但仍然等到涉及疾病的相關基因被確認和克隆出來才開始實施基因治療戰略。
轉基因和基因表達
一旦確認和克隆出基因,下一步必須表達出來。有關轉基因和基因表達的效率屬於基因治療研究的前沿問題。最近基因治療領域的許多爭論圍繞把所希望的基因轉入合適的細胞中,然後為疾病治療獲得滿意的表達水平。希望將來對轉基因和特殊組織基因表達的研究將在主要基因治療試驗中解決這一課題。基因治療戰略的其它認識包括:充分掌握靶點疾病的發病機理,潛在的基因治療副作用,理解接受基因治療的靶細胞。
術語:
與大多數領域一樣,基因治療有專門的術語,下列提供的將闡明某些最普通術語的意思。
體外轉基因:
把遺傳物質轉至寄主外部的細胞。經遺傳物質移植後的細胞再回到寄主中。這個術語還被稱為轉基因的非直接方法。
體內轉基因 :
遺傳物質轉入寄主體內的細胞。這還被稱為轉基因的直接方法。
基因治療:
把選擇過的基因轉入具有改善或治癒疾病希望的寄主中。
細胞治療(基因組治療):
把未經遺傳性修正的完整的細胞轉入寄主中,使被轉移的細胞將產生促進與寄主結合並改善寄主功能的希望。
體細胞轉化:
把基因轉入非種系組織中,它具有校正病人疾病狀態的希望。
種系基因:
把基因轉入種系組織中(蛋或胚胎),它有希望改變下一代的基因組。
轉基因:
在轉基因實驗中,選擇試驗基因。例如,如果你給患苯並酮尿症病人治病,你可計劃把一校正過的苯丙氨酸羥基酶基因譯本移入肝細胞中。在這個例子中,苯丙氨酸羥基酶的校正譯本就是轉基因。
報告基因:
常用於試驗基因轉換效率的基因。例子是luceriferase, --半乳糖和氯氨素乙烯轉化酶。
基因轉化載體:
基因被轉移進細胞的機理。
轉化率:
正在表達所期望的轉基因百分率。

⑸ 血小板抗原基因分型的方法有哪些

病原微生物的分子分型方法 近年來,隨著分子牛物學技術快速發展,新的診斷技術和方法不斷涌現並廣泛應用於臨床微生物的檢測,為病原微牛物的致病性、流行性、變異性以及耐葯性分析等方面提供J,重要的信息。

⑹ 基因分型的分型技術

一些常用的基因分型技術有:限制性片段長度多態性(Restriction Fragment Length Polymorphism, RFLP)、末端限制性長度多態性(Terminal Restriction Fragment Length Polymorphism, t-RFLP)、擴增片段長度多態性(Amplified fragment length polymorphisms, AFLP)、多重連接探針擴增(multiplex ligation-dependent probe amplification, MLPA)等。

⑺ 目前常用基因功能研究方法有哪些

基因敲除、基因沉默、基因的超量表達

⑻ 基因型分型的介紹

基因型分型用於遺傳學,確定一條染色體上一些基因,DNA序列或遺傳標記的連鎖組合。

⑼ 基因分型就是把相同的分在一起嗎

基因分型(genotyping),或稱為基因型分析在群體遺傳學(如不同人種的特徵)和法醫學(如親子鑒定)方面有廣泛的應用,早期利用Southernblots進行基因分析,但是這種方法耗時長,操作繁瑣,讓許多研究人員償盡了苦頭。隨著定量PCR的出現,相關技術的革新,PCR已使這些基因組學和轉錄組學發生了翻天覆地的變化,甚至隨著免疫PCR的普及開始進軍蛋白組學。相關技術要點1.實驗設計必需保證野生型的被限制性內切酶切開。因為對於只有少量突變型的SNP位點,如果突變型被切開,那麼所得到的實驗結果就是大量沒有被酶切開的PCR產物,而這個結果與酶切實驗失敗的結果非常類似,不易區分,對結果的判讀造成很大的麻煩,因此保證了主頻鹼基被解開,從根本上保證了實驗的可靠性。2.偏向性擴增的解決。所謂偏向性擴增是因為SNP位點上會往往存在嘌吟和嘧啶的替換,在PCR過程中,聚合反應對嘧啶(C或T)比較敏感,使得嘌吟(A或T)的擴增非常少,而出現偏向性擴增,這在SNP位點附近嘌吟含量較高時特別明顯。為此,本公司專門設計一個方案,用以克服偏向性擴增。3.方案設計中的內切酶的選擇雖然從理論上,我們的方案可以進行任意位點改造,但事實上在改造過程中會出現一系列的問題,包括擴增效率,鹼基劃移等一系列問題,使得改造方案失敗。對此,我們公司專業開發了一個引物設計軟體,通過運算獲得最佳的改造方案,同時通過在正向和反向序列上同時設計方案,以保證試驗的成功。

⑽ 什麼叫基因分型,基因分型的方法有哪些

基因分型(Genotyping)是利用生物學檢測方法測定個體基因型(Genotype)的技術。又稱為基因型分析(Genotypic assay),使用技術包括聚合酶鏈反應(PCR)、DNA片段分析、寡核苷酸探針(ASO probes)、基因測序、核酸雜交、基因晶元技術等。

方法:
一些常用的基因分型技術有:限制性片段長度多態性(Restriction Fragment Length Polymorphism, RFLP)、末端限制性長度多態性(Terminal Restriction Fragment Length Polymorphism, t-RFLP)、擴增片段長度多態性(Amplified fragment length polymorphisms, AFLP)、多重連接探針擴增(multiplex ligation-dependent probe amplification, MLPA)等。

臨床應用:
DNA片段分析能夠診斷疾病導致的遺傳變異,如微衛星序列不穩定(Microsatellite Instability, MSI)、三體型(Trisomy)、非整倍體(Aneuploidy)、雜合性缺失(loss of heterozygosity, LOH)等。微衛星序列不穩定和雜合性缺失與結腸癌、乳腺癌、子宮頸癌的腫瘤細胞基因型有關。第21號染色體的三體型是種常見的非整倍體,臨床表現為先天愚型(Down Syndrome)。

閱讀全文

與常用的基因分型的方法相關的資料

熱點內容
旱金蓮的種植方法圖解 瀏覽:994
給狗狗泡澡的正確方法 瀏覽:753
一天胸肌訓練方法 瀏覽:693
艾滋試紙使用圖片方法 瀏覽:443
氣體檢測儀四合一使用方法 瀏覽:843
體內蛋白質代謝的測量的主要方法 瀏覽:135
廊亭橋運用了哪些說明方法 瀏覽:492
英語回答我的問題還有哪些方法 瀏覽:419
工具書的常用編排方法 瀏覽:351
閉塞脈管炎治療方法 瀏覽:579
樟油的提取有哪些方法 瀏覽:499
卡紙立體女孩娃娃製作方法簡單 瀏覽:666
vivo手機瀏覽器視頻緩存在哪裡設置方法 瀏覽:393
練字均衡的最佳方法 瀏覽:899
干無花果的鑒別方法 瀏覽:916
電腦管家測網速的方法 瀏覽:169
籃球教練提升教學方法 瀏覽:50
寫作文如何開頭八種方法 瀏覽:876
該如何把握角度或採取什麼方法 瀏覽:296
雙電瓶隔離器的連接方法 瀏覽:571