導航:首頁 > 治療方法 > 半形結合最佳解題方法

半形結合最佳解題方法

發布時間:2023-07-26 19:24:07

Ⅰ 初中幾何解題技巧

初中幾何解題技巧如下:

1、按定義添輔助線:如證明二直線垂直可延長使它們,相交後證交角為90°;證線段倍半關系可倍線段取中點或半線段加倍;證角的倍半關系也可類似添輔助線。

2、按基本圖形添輔助線:每個幾何定理都有與它相對應的幾何圖形,我們把它叫做基本圖形,添輔助線往往是具有基本圖形的性質而基本圖形不完整時補完整基本圖形,因此「添線」應該叫做「補圖」。這樣可防止亂添線,添輔助線也有規律可循。舉例如下:

(1)平行線是個基本圖形:當幾何中出現平行線時添輔助線的關鍵是添與二條平行線都相交的等第三條直線

(2)等腰三角形是個簡單的基本圖形:當幾何問題中出現一點發出的二條相等線段時往往要補完整等腰三角形。出現角平分線與平行線組合時可延長平行線與角的二邊相交得等腰三角形。

(3)等腰三角形中的重要線段是個重要的基本圖形:出現等腰三角形底邊上的中點添底邊上的中線;出現角平分線與垂線組合時可延長垂線與角的二邊相交得等腰三角形中的重要線段的基本圖形。

(4)直角三角形斜邊上中線基本圖形出現直角三角形斜邊上的中點往往添斜邊上的中線。出現線段倍半關系且倍線段是直角三角形的斜邊則要添直角三角形斜邊上的中線得直角三角形斜邊上中線基本圖形。

3、三角形問題添加輔助線方法:方法1:有關三角形中線的題目,常將中線加倍。含有中點的題目,常常利用三角形的中位線,通過這種方法,把要證的結論恰當的轉移,很容易地解決了問題。

方法2:含有平分線的題目,常以角平分線為對稱軸,利用角平分線的性質和題中的條件,構造出全等三角形,從而利用全等三角形的知識解決問題。

方法3:結論是兩線段相等的題目常畫輔助線構成全等三角形,或利用關於平分線段的一些定理。

方法4:結論是一條線段與另一條線段之和等於第三條線段這類題目,常採用截長法或補短法,所謂截長法就是把第三條線段分成兩部分,證其中的一部分等於第一條線段,而另一部分等於第二條線段。

4、平行四邊形中常用輔助線的添法:平行四邊形(包括矩形、正方形、菱形)的兩組對邊、對角和對角線都具有某些相同性質,所以在添輔助線方法上也有共同之處,目的都是造就線段的平行、垂直,構成三角形的全等、相似,把平行四邊形問題轉化成常見的三角形、正方形等問題處理,其常用方法有下列幾種,舉例簡解如下:

(1)連對角線或平移對角線;(2)過頂點作對邊的垂線構造直角三角形;(3)連接對角線交點與一邊中點,或過對角線交點作一邊的平行線,構造線段平行或中位線;(4)連接頂點與對邊上一點的線段或延長這條線段,構造三角形相似或等積三角形;(5)過頂點作對角線的垂線,構成線段平行或三角形全等。

5、梯形中常用輔助線的添法:梯形是一種特殊的四邊形。它是平行四邊形、三角形知識的綜合,通過添加適當的輔助線將梯形問題化歸為平行四邊形問題或三角形問題來解決。

輔助線的添加成為問題解決的橋梁,梯形中常用到的輔助線有:(1)在梯形內部平移一腰;(2)梯形外平移一腰;(3)梯形內平移兩腰;(4)延長兩腰;(5)過梯形上底的兩端點向下底作高;(6)平移對角線;(7)連接梯形一頂點及一腰的中點;(8)過一腰的中點作另一腰的平行線;(9)作中位線

當然在梯形的有關證明和計算中,添加的輔助線並不一定是固定不變的、單一的。通過輔助線這座橋梁,將梯形問題化歸為平行四邊形問題或三角形問題來解決,這是解決問題的關鍵。

6、圓中常用輔助線的添法:(1)見弦作弦心距 有關弦的問題,常作其弦心距(有時還須作出相應的半徑),通過垂徑平分定理,來溝通題設與結論間的聯系。

(2)見直徑作圓周角 在題目中若已知圓的直徑,一般是作直徑所對的圓周角,利用"直徑所對的圓周角是直角"這一特徵來證明問題。

(3)見切線作半徑 命題的條件中含有圓的切線,往往是連結過切點的半徑,利用"切線與半徑垂直"這一性質來證明問題。

(4)兩圓相切作公切線 對兩圓相切的問題,一般是經過切點作兩圓的公切線或作它們的連心線,通過公切線可以找到與圓有關的角的關系。

(5)兩圓相交作公共弦 對兩圓相交的問題,通常是作出公共弦,通過公共弦既可把兩圓的弦聯系起來,又可以把兩圓中的圓周角或圓心角聯系起來。

人說幾何很困難,難點就在輔助線。輔助線,如何添?把握定理和概念。也可將圖對折看,對稱以後關系現。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。

要證線段倍與半,延長縮短可試驗。三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。平行四邊形出現,對稱中心等分點。梯形裡面作高線,平移一腰試試看。平行移動對角線,補成三角形常見。

證相似,比線段,添線平行成習慣。等積式子比例換,尋找線段很關鍵。直接證明有困難,等量代換少麻煩。斜邊上面作高線,比例中項一大片。半徑與弦長計算,弦心距來中間站。圓上若有一切線,切點圓心半徑連。切線長度的計算,勾股定理最方便。

要想證明是切線,半徑垂線仔細辨。是直徑,成半圓,想成直角徑連弦。弧有中點圓心連,垂徑定理要記全。圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。要想作個外接圓,各邊作出中垂線。還要作個內接圓,內角平分線夢圓。

如果遇到相交圓,不要忘作公共弦。內外相切的兩圓,經過切點公切線。若是添上連心線,切點肯定在上面。要作等角添個圓,證明題目少困難。輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對稱旋轉去實驗。

基本作圖很關鍵,平時掌握要熟練。解題還要多心眼,經常總結方法顯。切勿盲目亂添線,方法靈活應多變。分析綜合方法選,困難再多也會減。虛心勤學加苦練,成績上升成直線。

幾何證題難不難,關鍵常在輔助線;知中點、作中線,中線處長加倍看;底角倍半形分線,有時也作處長線;線段和差及倍分,延長截取證全等;公共角、公共邊,隱含條件須挖掘;全等圖形多變換,旋轉平移加折疊;

中位線、常相連,出現平行就好辦;四邊形、對角線,比例相似平行線;梯形問題好解決,平移腰、作高線;兩腰處長義一點,亦可平移對角線;正餘弦、正餘切,有了直角就方便;特殊角、特殊邊,作出垂線就解決;

實際問題莫要慌,數學建模幫你忙;圓中問題也不難,下面我們慢慢談;弦心距、要垂弦,遇到直徑周角連;切點圓心緊相連,切線常把半徑添;兩圓相切公共線,兩圓相交公共弦;切割線,連結弦,兩圓三圓連心線;基本圖形要熟練,復雜圖形多分解;以上規律屬一般,靈活應用才方便。

Ⅱ 高中三角函數解題技巧

三角函數變換的方法與技巧 (1)
角的變換
在三角函數的求值、化簡與證明題中,表達式往往出現較多的相異角,此時可根據角與角之間的和差、倍半、互余、互補的關系,運用角的變換,溝通條件與結論中角的差異,使問題獲解。常見角的變換方式有:;;;等等。
例1、已知,求證:。
分析:在條件中的角和 與求證結論中的角是有聯系的,可以考慮配湊角。
解:,,

函數名稱的變換
三角函數變換的目的在於「消除差異,化異為同」。而題目中經常出現不同名的三角函數,這就需要將異名的三角函數化為同名的三角函數。變換的依據是同角三角函數關系式或誘導公式。如把正(余)切、正(余)割化為正、餘弦,或化為正切、餘切、正割、餘割等等。常見的就是切割化弦。
例2 、(2001年上海春季高題)已知 ,試用表示的值。
分析:將已知條件「切化弦」轉化為的等式。
解:由已知;


常數的變換
在三角函數的、求值、證明中,有時需要將常數轉化為三角函數,例如常數「1」的變換有:,,等等。
例3、(2004年全國高考題)求函數的最小正周期,最大值和最小值。
分析:由所給的式子可聯想到。
解:


所以函數的最小正周期是,最大值為,最小值為。
公式的變形與逆用
在進行三角變換時,我們經常順用公式,但有時也需要逆用公式,以達到化簡的目的。通常順用公式容易,逆用公式困難,因此要有逆用公式的意識。教材中僅給出每一個三角公式的基本形式,如果我們熟悉其它變通形式,常可以開拓解題思路。如由可以變通為與;由可變形為等等。
例4、求的值。
分析:先看角,都是,再看函數名,需要切割化弦,最後在化簡過程中再看變換。
解:原式(切割化弦)

(逆用二倍角公式)
(常數變換)
(逆用差角公式)
(逆用二倍角公式)。
這里我們給出了四種三角函數的變換方法與技巧,在處理三角函數問題的過程中若能注意到這些變換的方法與技巧,將有利於我們對三角函數這一章內容的理解。
三角函數變換的方法與技巧(2)
在上一部分我們介紹了部分三角函數的孌換技巧與方法,下面我們再介紹四種變換的方法與技巧:
引入輔助角
可化為,這里輔助角所在的象限由的符號確定,角的值由確定。
例5、求的最大值與最小值。
分析:求三角函數的最值問題的方法:一是將三角函數化為同名函數,藉助三角函數的有界性求出;二是若不能化為同名,則應考慮引入輔助角。
解:

其中,,
當時,;
當時,。
註:在求三角函數的最值時,經常引入輔助角,然後利用三角函數的有界性求解。
冪的變換
降冪是三角變換時常用的方法,對於次數較高的三角函數式,一般採用降冪處理的方法。常用的降冪公式有:,和
等等。降冪並非絕對,有時也需要升冪,如對於無理式常用升冪化為有理式。
例6、化簡。
分析:從「冪」入手,利用降冪公式。
解:原式

消元法
如果所要證明或要求解的式子中不含已知條件中的某些變數,可以使用消元法消去此變數,然後再求解。
例7、求函數的最值。
解:原函數可變形為:,即

解得:,。
變換結構
在三角變換中,常常對條件、結論的結構施行調整,或重新分組,或移項,或變乘為除,或求差等等。在形式上有時須和差與積互化,分解因式,配方等。
例8、化簡。
分析:本題從「形式」上看,應把分析式化為整式、故分子分母必有公因式,只需把分子分母化成積的形式。
解:

所以。
九、思路變化
對於一道題,思路不同,方法出隨之不同。通過分析,比較,才能選出思路最為簡例9、求函數 的最大值。
解:由於,則為點與點()連線的斜率。則斜率最為當連線與半單位圓相切時,如圖所示:
此時, 。
捷的方法。

閱讀全文

與半形結合最佳解題方法相關的資料

熱點內容
白脈軟膏使用方法 瀏覽:298
喉骨軟化有沒有什麼好的治療方法 瀏覽:633
貴州中元節新式寫包的正確方法 瀏覽:877
做沙包的步驟帶有說明方法 瀏覽:720
萬聖手機殼製作方法 瀏覽:500
常用的浸提方法包括超濾法 瀏覽:663
惠普筆記本開機密碼在哪裡設置方法 瀏覽:736
投籃瞄準方法和技巧 瀏覽:741
馬粟樂使用方法 瀏覽:314
食用油最簡單的方法 瀏覽:675
食用油哪些方法 瀏覽:120
健身地膠點訓練方法 瀏覽:747
透明手機解鎖方法 瀏覽:990
2021年智慧樹教育科學研究方法試題答案 瀏覽:706
測量鋪貼瓷磚平整度的正確方法 瀏覽:363
如何確定齒輪的製造方法 瀏覽:612
公路涵洞測量方法 瀏覽:639
對數方程最簡單的方法 瀏覽:87
導泄作用的研究方法 瀏覽:95
生態建設的方法有哪些 瀏覽:573