『貳』 光速是如何測定出來的
1、最早的高精度測量光速的方法,齒輪法。
光在特定的光路上,兩次通過齒輪的間隙後被觀測者看到。這種情況下,只有齒輪的轉速是某一些特定的值的時候,光才可以順利通過兩個間隙,而不被擋住。而這個特定的轉速,則與光速有關。這樣,就把光速的測量,轉化成了測量一個齒輪的轉速。
2、邁克爾遜的改進實驗。
把齒輪換成了一個八面的鏡子。鏡子不斷旋轉,只有在轉速是特定的值的時候,光才能順利被反射,進入觀測者的眼睛。由於這里,鏡子對光路的影響更大,所以測量的精確度可以更高。
3、現代的光路測量往往會使用干涉法。
通過測量特定頻率的激光的波長,再用速度=波長*頻率,就能算出來速度。這一方法的精度極高。現在,由於米是從光速定義過來的,所以光速的值也就定死了,就是299792458m/s。
(2)光速運動的最佳方法擴展閱讀:
第一個嘗試去測量光速的是伽利略。
他和他的助手在夜間相隔數公里遠面對面地站著,每人拿一盞燈,燈有開關。首先,第一個人先舉起燈,同時記下時間。當第二個人看到第一個人的燈時立即舉起自己的燈,也記下時間。從第一個人舉起燈到他看到第二個人的燈的時間間隔就是光傳播1.6km里的時間。
為了減小誤差,伽利略反反復復舉燈,但當時的他不知道光的傳播速度實在是太快了,這種方法最終失敗。但伽利略的實驗揭開了人類歷史上對光速進行研究的序幕。
光速是物理學中最重要的基本常數之一,也是所有各種頻率的電磁波在真空中的傳播速度.狹義相對論認為:任何信號和物體的速度都不能超過真空中的光速.在折射率為n的介質中,光的傳播速度為:v=c/n.在光學和物理學的發展歷史上,光速的測定,一直是許多科學家為之探索的課題.許多光速測量方法那巧妙的構思、高超的實驗設計一直在啟迪著後人的物理學研究.歷史上光速測量方法可以分為天文學測量方法、大地測量方法和實驗室測量方法等
一、光速測定的天文學方法
1.羅默的衛星蝕法
光速的測量,首先在天文學上獲得成功,這是因為宇宙廣闊的空間提供了測量光速所需要的足夠大的距離.早在1676年丹麥天文學家羅默(1644—1710)首先測量了光速.由於任何周期性的變化過程都可當作時鍾,他成功地找到了離觀察者非常遙遠而相當准確的「時鍾」,羅默在觀察時所用的是木星每隔一定周期所出現的一次衛星蝕.他在觀察時注意到:連續兩次衛星蝕相隔的時間,當地球背離木星運動時,要比地球迎向木星運動時要長一些,他用光的傳播速度是有限的來解釋這個現象.光從木星發出(實際上是木星的衛星發出),當地球離開木星運動時,光必須追上地球,因而從地面上觀察木星的兩次衛星蝕相隔的時間,要比實際相隔的時間長一些;當地球迎向木星運動時,這個時間就短一些.因為衛星繞木星的周期不大(約為1.75天),所以上述時間差數,在最合適的時間(上圖中地球運行到軌道上的A和A』兩點時)不致超過15秒(地球的公轉軌道速度約為30千米/秒).因此,為了取得可靠的結果,當時的觀察曾在整年中連續地進行.羅默通過觀察從衛星蝕的時間變化和地球軌道直徑求出了光速.由於當時只知道地球軌道半徑的近似值,故求出的光速只有214300km/s.這個光速值盡管離光速的准確值相差甚遠,但它卻是測定光速歷史上的第一個記錄.後來人們用照相方法測量木星衛星蝕的時間,並在地球軌道半徑測量准確度提高後,用羅默法求得的光速為299840±60km/s.
2.布萊德雷的光行差法
1728年,英國天文學家布萊德雷(1693—1762)採用恆星的光行差法,再一次得出光速是一有限的物理量.布萊德雷在地球上觀察恆星時,發現恆星的視位置在不斷地變化,在一年之內,所有恆星似乎都在天頂上繞著半長軸相等的橢圓運行了一周.他認為這種現象的產生是由於恆星發出的光傳到地面時需要一定的時間,而在此時間內,地球已因公轉而發生了位置的變化.他由此測得光速為:
C=299930千米/秒
這一數值與實際值比較接近.
以上僅是利用天文學的現象和觀察數值對光速的測定,而在實驗室內限於當時的條件,測定光速尚不能實現.
二、光速測定的大地測量方法
光速的測定包含著對光所通過的距離和所需時間的量度,由於光速很大,所以必須測量一個很長的距離和一個很短的時間,大地測量法就是圍繞著如何准確測定距離和時間而設計的各種方法.
1.伽利略測定光速的方法
物理學發展史上,最早提出測量光速的是義大利物理學家伽利略.1607年在他的實驗中,讓相距甚遠的兩個觀察者,各執一盞能遮閉的燈,如圖所示:觀察者A打開燈光,經過一定時間後,光到達觀察者B,B立即打開自己的燈光,過了某一時間後,此信號回到A,於是A可以記下從他自己開燈的一瞬間,到信號從B返回到A的一瞬間所經過的時間間隔t.若兩觀察者的距離為S,則光的速度為
c=2s/t
因為光速很大,加之觀察者還要有一定的反應時間,所以伽利略的嘗試沒有成功.如果用反射鏡來代替B,那麼情況有所改善,這樣就可以避免觀察者所引入的誤差.這種測量原理長遠地保留在後來的一切測定光速的實驗方法之中.甚至在現代測定光速的實驗中仍然採用.但在信號接收上和時間測量上,要採用可靠的方法.使用這些方法甚至能在不太長的距離上測定光速,並達到足夠高的精確度.
2.旋轉齒輪法
用實驗方法測定光速首先是在1849年由斐索實驗.他用定期遮斷光線的方法(旋轉齒輪法)進行自動記錄.實驗示意圖如下.從光源s發出的光經會聚透鏡L1射到半鍍銀的鏡面A,由此反射後在齒輪W的齒a和a』之間的空隙內會聚,再經透鏡L2和L3而達到反射鏡M,然後再反射回來.又通過半鍍鏡A由L4集聚後射入觀察者的眼睛E.如使齒輪轉動,那麼在光達到M鏡後再反射回來時所經過的時間△t內,齒輪將轉過一個角度.如果這時a與a』之間的空隙為齒a(或a』)所佔據,則反射回來的光將被遮斷,因而觀察者將看不到光.但如齒輪轉到這樣一個角度,使由M鏡反射回來的光從另一齒間空隙通過,那麼觀察者會重新看到光,當齒輪轉動得更快,反射光又被另一個齒遮斷時,光又消失.這樣,當齒輪轉速由零而逐漸加快時,在E處將看到閃光.由齒輪轉速v、齒數n與齒輪和M的間距L可推得光速c=4nvL.
在斐索所做的實驗中,當具有720齒的齒輪,一秒鍾內轉動12.67次時,光將首次被擋住而消失,空隙與輪齒交替所需時間為
在這一時間內,光所經過的光程為2×8633米,所以光速c=2×8633×18244=3.15×108(m/s).
在對信號的發出和返回接收時刻能作自動記錄的遮斷法除旋轉齒輪法外,在現代還採用克爾盒法.1941年安德孫用克爾盒法測得:c=299776±6km/s,1951年貝格斯格蘭又用克爾盒法測得c=299793.1±0.3km/s.
3.旋轉鏡法
旋轉鏡法的主要特點是能對信號的傳播時間作精確測量.1851年傅科成功地運用此法測定了光速.旋轉鏡法的原理早在1834年1838年就已為惠更斯和阿拉果提出過,它主要用一個高速均勻轉動的鏡面來代替齒輪裝置.由於光源較強,而且聚焦得較好.因此能極其精密地測量很短的時間間隔.實驗裝置如圖所示.從光源s所發出的光通過半鍍銀的鏡面M1後,經過透鏡L射在繞O軸旋轉的平面反射鏡M2上O軸與圖面垂直.光從M2反射而會聚到凹面反射鏡M3上,M3的曲率中心恰在O軸上,所以光線由M3對稱地反射,並在s′點產生光源的像.當M2的轉速足夠快時,像S′的位置將改變到s〃,相對於可視M2為不轉時的位置移動了△s的距離可以推導出光速值:
式中w為M2轉動的角速度.l0為M2到M3的間距,l為透鏡L到光源S的間距,△s為s的像移動的距離.因此直接測量w、l、l0、△s,便可求得光速.
在傅科的實驗中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=298000±500km/s.
另外,傅科還利用這個實驗的基本原理,首次測出了光在介質(水)中的速度v<c,這是對波動說的有力證據.
3.旋轉棱鏡法
邁克耳遜把齒輪法和旋轉鏡法結合起來,創造了旋轉棱鏡法裝置.因為齒輪法之所以不夠准確,是由於不僅當齒的中央將光遮斷時變暗,而且當齒的邊緣遮斷光時也是如此.因此不能精確地測定象消失的瞬時.旋轉鏡法也不夠精確,因為在該法中象的位移△s太小,只有0.7毫米,不易測准.邁克耳遜的旋轉鏡法克服了這些缺點.他用一個正八面鋼質棱鏡代替了旋轉鏡法中的旋轉平面鏡,從而光路大大的增長,並利用精確地測定棱鏡的轉動速度代替測齒輪法中的齒輪轉速測出光走完整個路程所需的時間,從而減少了測量誤差.從1879年至1926年,邁克耳遜曾前後從事光速的測量工作近五十年,在這方面付出了極大的勞動.1926年他的最後一個光速測定值為
c=299796km/s
這是當時最精確的測定值,很快成為當時光速的公認值.
三、光速測定的實驗室方法
光速測定的天文學方法和大地測量方法,都是採用測定光信號的傳播距離和傳播時間來確定光速的.這就要求要盡可能地增加光程,改進時間測量的准確性.這在實驗室里一般是受時空限制的,而只能在大地野外進行,如斐索的旋輪齒輪法當時是在巴黎的蘇冷與達蒙瑪特勒相距8633米的兩地進行的.傅科的旋轉鏡法當時也是在野外,邁克耳遜當時是在相距35373.21米的兩個山峰上完成的.現代科學技術的發展,使人們可以使用更小更精確地實驗儀器在實驗室中進行光速的測量.
1.微波諧振腔法
1950年埃森最先採用測定微波波長和頻率的方法來確定光速.在他的實驗中,將微波輸入到圓柱形的諧振腔中,當微波波長和諧振腔的幾何尺寸匹配時,諧振腔的圓周長πD和波長之比有如下的關系:πD=2.404825λ,因此可以通過諧振腔直徑的測定來確定波長,而直徑則用干涉法測量;頻率用逐級差頻法測定.測量精度達10-7.在埃森的實驗中,所用微波的波長為10厘米,所得光速的結果為299792.5±1km/s.
2.激光測速法
1790年美國國家標准局和美國國立物理實驗室最先運用激光測定光速.這個方法的原理是同時測定激光的波長和頻率來確定光速(c=νλ).由於激光的頻率和波長的測量精確度已大大提高,所以用激光測速法的測量精度可達10-9,比以前已有最精密的實驗方法提高精度約100倍.
四、光速測量方法一覽表
除了以上介紹的幾種測量光速的方法外,還有許多十分精確的測定光速的方法.現將不同方法測定的光速值列為「光速測量一覽表」供參考.
根據1975年第十五屆國際計量大會的決議,現代真空中光速的最可靠值是:
c=299792.458±0.001km/s