導航:首頁 > 治療方法 > 最佳閾值方法就是使圖像

最佳閾值方法就是使圖像

發布時間:2022-09-02 12:18:45

『壹』 「閾值法」怎麼定義

閾值方法分為全局閾值和局部閾值兩種,如果分割過程中對圖像上每個像素所使用的閾值都相等,則為全局閾值方法。如果每個像素所使用的閾值可能不同,則為局部閾值方法。

『貳』 ps中的閾值有什麼作用怎樣使用閾值

閾值是色階的最大控制值,它的作用是用於控制當前圖像的明度與暗度的對比程度,並且會把圖像中所有的彩色信息去除,只剩下黑白色,使用閾值可以提取出當前圖像中的高光部分與陰暗部分。可以使用二種方法執行:一種是利用圖像菜單中的調整命令中直接啟動,另一種是添加調整圖層中添加。

『叄』 圖像分割最好方法

1.基於閾值的分割方法

閾值法的基本思想是基於圖像的灰度特徵來計算一個或多個灰度閾值,並將圖像中每個像素的灰度值與閾值作比較,最後將像素根據比較結果分到合適的類別中。因此,該方法最為關鍵的一步就是按照某個准則函數來求解最佳灰度閾值。

閾值法特別適用於目標和背景占據不同灰度級范圍的圖。圖像若只有目標和背景兩大類,那麼只需要選取一個閾值進行分割,此方法成為單閾值分割;但是如果圖像中有多個目標需要提取,單一閾值的分割就會出現作物,在這種情況下就需要選取多個閾值將每個目標分隔開,這種分割方法相應的成為多閾值分割。
2.基於區域的圖像分割方法

基於區域的分割方法是以直接尋找區域為基礎的分割技術,基於區域提取方法有兩種基本形式:一種是區域生長,從單個像素出發,逐步合並以形成所需要的分割區域;另一種是從全局出發,逐步切割至所需的分割區域。
分水嶺演算法

分水嶺演算法是一個非常好理解的演算法,它根據分水嶺的構成來考慮圖像的分割,現實中我們可以想像成有山和湖的景象,那麼一定是水繞山山圍水的景象。

分水嶺分割方法,是一種基於拓撲理論的數學形態學的分割方法,其基本思想是把圖像看作是測地學上的拓撲地貌,圖像中每一點像素的灰度值表示該點的海拔高度,每一個局部極小值及其影響區域稱為集水盆,而集水盆的邊界則形成分水嶺。分水嶺的概念和形成可以通過模擬浸入過程來說明。在每一個局部極小值表面,刺穿一個小孔,然後把整個模型慢慢浸入水中,隨著浸入的加深,每一個局部極小值的影響域慢慢向外擴展,在兩個集水盆匯合處構築大壩,即形成分水嶺。

『肆』 一幅圖像通過閾值分割演算法得到最佳閾值,怎麼通過閾值得到分割後的兩幅圖像比如說:分割舌苔舌質

根據灰度、梯度、形態等來設定自適應閾值。
設定過程:設置→參數→選擇(灰度、梯度、形態)→輸入數值→計算閾值→搞定。

閾值又叫臨界值,是指一個效應能夠產生的最低值或最高值。
閾值又稱閾強度,是指釋放一個行為反應所需要的最小刺激強度。低於閾值的刺激不能導致行為釋放。在反射活動中,閾值的大小是固定不變的,在復雜行為中,閾值則受各種環境條件和動物生理狀況的影響。當一種行為更難於釋放時,就是閾值提高了;當一種行為更容易釋放時,就是閾值下降了。一般說來,剛剛完成某一行為後,動物對這一行為的要求就會大大下降。例如剛交過尾的動物,對於性刺激或是沒有反應或是反應很弱,這就意味著釋放性行為的閾值增加了。類似情況在覓食行為和其他行為中也很常見。另一方面,長時間未發生的行為非常容易被釋放,釋放這種行為的刺激強度會變得非常小。在極端情況下,閾值的降低可以導致行為的自發產生,這就是空放行為(vacuum behavior)。空放行為是一種無刺激行為釋放,是達不到該種行為目的的一種行為。最令人信服的實例是織巢鳥的築巢行為。飼養在鳥籠中的織巢鳥,在得不到任何築巢材料和代用物的情況下,也完全可以表現出築巢動作,雖然這種動作達不到它本來的目的。
閾值又叫臨界值,是指一個效應能夠產生的最低值或最高值。

『伍』 ps中,閾值是什麼意思具體形象一點,最好有例子說明

字典解釋:在自動控制系統中能產生一個校正動作的最小輸入值
刺激引起應激組織反應的最低值

PS解釋:「閾值」命令將灰度或彩色圖像轉換為高對比度的黑白圖像。您可以指定某個色階作為閾值。所有比閾值亮的像素轉換為白色;而所有比閾值暗的像素轉換為黑色。「閾值」命令對確定圖像的最亮和最暗區域很有用。

我的解釋,就是拿黑白2色去闡述你的圖片,是可調節的。

『陸』 在遙感中閾值是什麼意思

圖像分割是圖像處理與計算機視覺領域低層次視覺中最為基礎和重要的領域之一,它是對圖像進行視覺分析和模式識別的基本前提.閾值法是一種傳統的圖像分割方法,因其實現簡單、計算量小、性能較穩定而成為圖像分割中最基本和應用最廣泛的分割技術.已被應用於很多的領域。本文是在閱讀大量國內外相關文獻的基礎上,對閾值分割技術稍做總結,分三個大類綜述閾值選取方法,然後對閾值化演算法的評估做簡要介紹。
關鍵詞
圖像分割 閾值選取 全局閾值 局部閾值 直方圖 二值化

1.引言
所謂圖像分割是指根據灰度、彩色、空間紋理、幾何形狀等特徵把圖像劃分成若干個互不相交的區域,使得這些特徵在同一區域內,表現出一致性或相似性,而在不同區域間表現出明顯的不同[37].簡單的講,就是在一幅圖像中,把目標從背景中分離出來,以便於進一步處理。圖像分割是圖像處理與計算機視覺領域低層次視覺中最為基礎和重要的領域之一,它是對圖像進行視覺分析和模式識別的基本前提.同時它也是一個經典難題,到目前為止既不存在一種通用的圖像分割方法,也不存在一種判斷是否分割成功的客觀標准。
閾值法是一種傳統的圖像分割方法,因其實現簡單、計算量小、性能較穩定而成為圖像分割中最基本和應用最廣泛的分割技術.已被應用於很多的領域,例如,在紅外技術應用中,紅外無損檢測中紅外熱圖像的分割,紅外成像跟蹤系統中目標的分割;在遙感應用中,合成孔徑雷達圖像中目標的分割等;在醫學應用中,血液細胞圖像的分割,磁共振圖像的分割;在農業工程應用中,水果品質無損檢測過程中水果圖像與背景的分割。在工業生產中,機器視覺運用於產品質量檢測等等。在這些應用中,分割是對圖像進一步分析、識別的前提,分割的准確性將直接影響後續任務的有效性,其中閾值的選取是圖像閾值分割方法中的關鍵技術。

2.閾值分割的基本概念
圖像閾值化分割是一種最常用,同時也是最簡單的圖像分割方法,它特別適用於目標和背景占據不同灰度級范圍的圖像[1]。它不僅可以極大的壓縮數據量,而且也大大簡化了分析和處理步驟,因此在很多情況下,是進行圖像分析、特徵提取與模式識別之前的必要的圖像預處理過程。圖像閾值化的目的是要按照灰度級,對像素集合進行一個劃分,得到的每個子集形成一個與現實景物相對應的區域,各個區域內部具有一致的屬性,而相鄰區域布局有這種一致屬性。這樣的劃分可以通過從灰度級出發選取一個或多個閾值來實現。
閾值分割法是一種基於區域的圖像分割技術,其基本原理是:通過設定不同的特徵閾值,把圖像像素點分為若干類.常用的特徵包括:直接來自原始圖像的灰度或彩色特徵;由原始灰度或彩色值變換得到的特徵.設原始圖像為f(x,y),按照一定的准則在f(x,y)中找到特徵值T,將圖像分割為兩個部分,分割後的圖像為

若取 :b0=0(黑),b1=1(白),即為我們通常所說的圖像二值化。

(原始圖像) (閾值分割後的二值化圖像)

一般意義下,閾值運算可以看作是對圖像中某點的灰度、該點的某種局部特性以及該點在圖像中的位置的一種函數,這種閾值函數可記作
T(x,y,N(x,y),f(x,y))
式中,f(x,y)是點(x,y)的灰度值;N(x,y)是點(x,y)的局部鄰域特性.根據對T的不同約束,可以得到3種不同類型的閾值[37],即
點相關的全局閾值T=T(f(x,y))
(只與點的灰度值有關)
區域相關的全局閾值T=T(N(x,y),f(x,y))
(與點的灰度值和該點的局部鄰域特徵有關)
局部閾值或動態閾值T=T(x,y,N(x,y),f(x,y))
(與點的位置、該點的灰度值和該點鄰域特徵有關)

圖像閾值化這個看似簡單的問題,在過去的四十年裡受到國內外學者的廣泛關注,產生了數以百計的閾值選取方法[2-9],但是遺憾的是,如同其他圖像分割演算法一樣,沒有一個現有方法對各種各樣的圖像都能得到令人滿意的結果,甚至也沒有一個理論指導我們選擇特定方法處理特定圖像。
所有這些閾值化方法,根據使用的是圖像的局部信息還是整體信息,可以分為上下文無關(non-contextual)方法(也叫做基於點(point-dependent)的方法)和上下文相關(contextual)方法(也叫做基於區域(region-dependent)的方法);根據對全圖使用統一閾值還是對不同區域使用不同閾值,可以分為全局閾值方法(global thresholding)和局部閾值方法(local thresholding,也叫做自適應閾值方法adaptive thresholding);另外,還可以分為雙閾值方法(bilever thresholding)和多閾值方法(multithresholding)
本文分三大類對閾值選取技術進行綜述:
1) 基於點的全局閾值方法;
2) 基於區域的全局閾值方法
3) 局部閾值方法和多閾值方法

3.基於點的全局閾值選取方法
3.1 p-分位數法
1962年Doyle[10]提出的p-分位數法(也稱p-tile法)可以說是最古老的一種閾值選取方法。該方法使目標或背景的像素比例等於其先驗概率來設定閾值,簡單高效,但是對於先驗概率難於估計的圖像卻無能為力。
例如,根據先驗知識,知道圖像目標與背景象素的比例為PO/PB,則可根據此條件直接在圖像直方圖上找到合適的閾值T,使得f(x,y)>=T的象素為目標,f(x,y)<T的象素為背景。

3.2 迭代方法選取閾值[11]
初始閾值選取為圖像的平均灰度T0,然後用T0將圖像的象素點分作兩部分,計算兩部分各自的平均灰度,小於T0的部分為TA,大於T0的部分為TB
計算 ,將T1 作為新的全局閾值代替T0,重復以上過程,如此迭代,直至TK 收斂,即TK+1 =TK
經試驗比較,對於直方圖雙峰明顯,谷底較深的圖像,迭代方法可以較快地獲得滿意結果。但是對於直方圖雙峰不明顯,或圖像目標和背景比例差異懸殊,迭代法所選取的閾值不如最大類間方差法。

3.3 直方圖凹面分析法
從直觀上說,圖像直方圖雙峰之間的谷底,應該是比較合理的圖像分割閾值,但是實際的直方圖是離散的,往往十分粗糙、參差不齊,特別是當有雜訊干擾時,有可能形成多個谷底。從而難以用既定的演算法,實現對不同類型圖像直方圖谷底的搜索。
Rosenfeld和Torre[12]提出可以構造一個包含直方圖 的最小凸多邊形 ,由集差 確定 的凹面。若 和 分別表示 與 在灰度級之處的高度,則 取局部極大值時所對應的灰度級可以作為閾值。也有人使用低通濾波的方法平滑直方圖,但是濾波尺度的選擇並不容易[13]。
但此方法仍然容易受到雜訊干擾,對不同類型的圖像,表現出不同的分割效果。往往容易得到假的谷底。但此方法對某些只有單峰直方圖的圖像,也可以作出分割。如:

3.4 最大類間方差法
由Otsu[14]於1978年提出的最大類間方差法以其計算簡單、穩定有效,一直廣為使用。從模式識別的角度看,最佳閾值應當產生最佳的目標類與北京類的分離性能,此性能我們用類別方差來表徵,為此引入類內方差 、類間方差 和總體方差 ,並定義三個等效的准則測量:
, , . (3)
鑒於計算量的考量,人們一般通過優化第三個准則獲取閾值。此方法也有其缺陷,kittler和Illingworth[15]的實驗揭示:當圖像中目標與背景的大小之比很小時方法失效。
在實際運用中,往往使用以下簡化計算公式:
(T) = WA(μa-μ)2 + Wb(μb-μ)2
其中, 為兩類間最大方差,WA 為A類概率,μa為A類平均灰度,Wb 為B類概率,μb為B類平均灰度,μ為圖像總體平均灰度。
即閾值T將圖像分成A,B兩部分,使得兩類總方差 (T)取最大值的T,即為最佳分割閾值。

3.5 熵方法
八十年代以來,許多學者將Shannon信息熵的概念應用於圖像閾值化,其基本思想都是利用圖像的灰度分布密度函數定義圖像的信息熵,根據假設的不同或視角的不同提出不同的熵准則,最後通過優化該准則得到閾值。Pun[16]通過使後驗熵的上限最大來確定閾值。Kapur等人[17]的方法假定目標和背景服從兩個不同的概率分布 和 定義
(4)
使得熵
(5)
達到最大求得最佳閾值。
此方法又稱為KSW熵方法。

3.6 最小誤差閾值
此方法來源於Bayes最小誤差分類方法。

Eb(T)是目標類錯分到背景類的概率,Eo(T)是背景類錯分到目標類的概率
總的誤差概率 E(T) = Eb(T) + Eo(T)
使E(T)取最小值,即為最優分類方法。

在Kittler和Illingworth[18]於1986年提出的最小誤差法中,直方圖被視為目標與背景混合集概率密度函數 的估計
(9)
其中, 為先驗概率, ,求解下列方程可得到Bayes最小誤差閾值
(10)
遺憾的是上式中 , 和 通常是未知的,Nakagawa和Rosenfeld[19]提倡用擬合方法從直方圖中估計這些參數,但是演算法相當復雜,不易實現。

3.7 矩量保持法
矩量保持(moment-preserving)法[20] ,即矩守恆閾值法,是1985年提出的,其基本思想是最佳的閾值應該使分割前後圖像的矩量保持不變,由此可以得到一組矩量保持方程,求解該方程組就可以得到最佳閾值。

3.8 模糊集方法
模糊集理論較好的描述了人類視覺中的模糊性和隨機性,因此在圖像閾值化領域受到了廣泛的關注。模糊集閾值化方法的基本思想是,選擇一種S狀的隸屬度函數定義模糊集,隸屬度為0.5的灰度級對應了閾值,當然在上述隸屬度函數的表達式中閾值是一個未知的參數;然後在此模糊集上定義某種准則函數(例如整個圖像的總體模糊度),通過優化准則函數來確定最佳閾值。
Pal等[21]首先,他們把一幅具有 個灰度級的 圖像看作一個模糊集 ,其中隸屬函數 定義如下:
(11)
參數 稱之為交叉點(即 )。由此從圖像 的空間 平面得到模糊特性 平面。然後,基於此模糊集定義了圖像的線性模糊度 、二次模糊度 和模糊熵 ,使這三個量取最小值時的交叉點 即為最佳閾值。
文獻[21]指出模糊隸屬度函數在該演算法中的作用僅在於將圖像由灰度數據空間轉換為模糊空間 ,其函數的形式對增強結果幾乎沒有影響。這就使我們有理由使用一些形式簡單的函數形式。例如國內學者發表的一種模糊閾值方法[22]:

隸屬度μ(x)表示灰度x具有明亮特性的程度,c為隸屬函數窗寬,q對應隸屬度為0.5的灰度級。設灰度級 的模糊率為:
= min{μ(l),1-μ(l)}
則得到整幅圖像的模糊率[44]

其中,MN為圖像尺寸,L為圖像總灰度級, 圖像中灰度為 的象素個數。
對應於不同的q值,就可以計算出相應的圖像模糊率,選取使得 最小的q值,作為圖像分割的最佳閾值即可。

3.9 小結
對於基於點的全局閾值選取方法,除上述主要幾種之外還許多,但大多都是以上述基本方法為基礎,做出的改進方法或者對演算法的優化,如使用遞推方法以降低演算法復雜性。
例如在文獻[42]中,提出一種使目標和背景差距最大的閾值求取方法,類似於最大類間方差閾值法。是它的一種簡化演算法。
又如1984年Dunn等人[23]提出了均勻化誤差閾值選取方法,這種方法實質上是要使將背景點誤分為目標點的概率等於將目標點誤分為背景點的概率。類似於最小誤差閾值法。
近年來有一些新的研究手段被引入到閾值選取中。比如人工智慧,在文獻[24] 中,描述了如何用人工智慧的方法,尋找直方圖的谷底點,作為全局閾值分割。其它如神經網路,數學形態學[39][46],小波分析與變換[40]等等。
總的來說,基於點的全局閾值演算法,與其它幾大類方法相比,演算法時間復雜度較低,易於實現,適合應用於在線實時圖像處理系統。由於我的研究方向為機器視覺,所作的項目要求演算法具有良好的實時性,因此針對基於點的全局閾值方法,閱讀了較多的文獻,在綜述里敘述也相對比較詳細。

4 基於區域的全局閾值選取方法
對一幅圖像而言,不同的區域,比如說目標區域或背景區域,同一區域內的象素,在位置和灰度級上同時具有較強的一致性和相關性。
而在上述基於點的全局閾值選取方法中,有一個共同的弊病,那就是它們實際上只考慮了直方圖提供的灰度級信息,而忽略了圖像的空間位置細節,其結果就是它們對於最佳閾值並不是反映在直方圖的谷點的情況會束手無策,不幸我們通常遇到的很多圖像恰恰是這種情況。另一方面,完全不同的兩幅圖片卻可以有相同的直方圖,所以即使對於峰谷明顯的情況,這些方法也不能保證你得到合理的閾值。於是,人們又提出了很多基於空間信息的閾值化方法。
可以說,局域區域的全局閾值選取方法,是基於點的方法,再加上考慮點領域內象素相關性質組合而成,所以某些方法常稱為「二維xxx方法」。由於考慮了象素領域的相關性質,因此對雜訊有一定抑止作用[41]。
4.1 二維熵閾值分割方法[25]
使用灰度級-局域平均灰度級形成的二維灰度直方圖[43]進行閾值選取,這樣就得到二維熵閾值化方法。

(二維灰度直方圖: 灰度-領域平均灰度)
如圖,在0區和1區,象素的灰度值與領域平均灰度值接近,說明一致性和相關性較強,應該大致屬於目標或背景區域;2區和3區一致性和相關性較弱,可以理解為雜訊或邊界部分。二維熵閾值分割,就是選擇(S,T)對,使得目標類和背景類的後驗熵最大。(具體方法是一維熵閾值分割的推廣,可參見上一節)
Abutaleb[26],和Pal]結合Kapur]和Kirby的方法,分別提出了各自的二維熵閾值化方法,其准則函數都是使目標熵和背景熵之和最大化。Brink[27]的方法則是使這兩者中的較小者最大化,該方法的計算復雜度為 ,後來有人改進為遞推快速演算法將時間復雜度降為 (其中 為最大灰度級數)。

4.2 簡單統計法
Kittler等人[28],[29]提出一種基於簡單的圖像統計的閾值選取方法。使用這種方法,閾值可以直接計算得到,從而避免了分析灰度直方圖,也不涉及准則函數的優化。該方法的計算公式為
(19)
其中,

因為e(x,y)表徵了點(x,y)領域的性質,因此本方法也屬於基於區域的全局閾值法。

4.3 直方圖變化法
從理論上說,直方圖的谷底是非常理想的分割閾值,然後在實際應用中,圖像常常受到雜訊等的影響而使其直方圖上原本分離的峰之間的谷底被填充,或者目標和背景的峰相距很近或者大小差不多,要檢測他們的谷底就很難了。
在上一節基於點的全局閾值方法中,我們知道直方圖凹面分析法的弊病是容易受到雜訊干擾,對不同類型的圖像,表現出不同的分割效果。往往容易得到假的谷底。這是由於原始的直方圖是離散的,而且含雜訊,沒有考慮利用象素領域性質。
而直方圖變化法,就是利用一些象素領域的局部性質變換原始的直方圖為一個新的直方圖。這個新的直方圖與原始直方圖相比,或者峰之間的谷底更深,或者谷轉變成峰從而更易於檢測。這里的象素領域局部性質,在很多方法中經常用的是象素的梯度值。
例如,由於目標區的象素具有一定的一致性和相關性,因此梯度值應該較小,背景區也類似。而邊界區域或者雜訊,就具有較大的梯度值。最簡單的直方圖變換方法,就是根據梯度值加權,梯度值小的象素權加大,梯度值大的象素權減小。這樣,就可以使直方圖的雙峰更加突起,谷底更加凹陷。

4.4 其它基於區域的全局閾值法
鬆弛法利用鄰域約束條件迭代改進線性方程系統的收斂特性,當用於圖像閾值化時其思想是:首先根據灰度級按概率將像素分為「亮」和「暗」兩類,然後按照領域像素的概率調整每個像素的概率,調整過程迭代進行,使得屬於亮(暗)區域的像素「亮(暗)」的概率變得更大。
其它還有許多方法利用灰度值和梯度值散射圖,或者利用灰度值和平均灰度值散射圖。

5 局部閾值法和多閾值法

5.1 局部閾值(動態閾值)
當圖像中有如下一些情況:有陰影,照度不均勻,各處的對比度不同,突發雜訊,背景灰度變化等,如果只用一個固定的全局閾值對整幅圖像進行分割,則由於不能兼顧圖像各處的情況而使分割效果受到影響。有一種解決辦法就是用與象素位置相關的一組閾值(即閾值使坐標的函數)來對圖像各部分分別進行分割。這種與坐標相關的閾值也叫動態閾值,此方法也叫變化閾值法,或自適應閾值法。這類演算法的時間復雜性可空間復雜性比較大,但是抗噪能力強,對一些用全局閾值不易分割的圖像有較好的效果。
例如,一幅照度不均(左邊亮右邊暗)的原始圖像為:

如果只選擇一個全局閾值進行分割,那麼將出現下面兩種情況,都不能得到滿意的效果。

(閾值低,對亮區效果好,則暗區差) (閾值高,對暗區效果好,則亮區差)

若使用局部閾值,則可分別在亮區和暗區選擇不同的閾值,使得整體分割效果較為理性。

(按兩個區域取局部閾值的分割結果)
進一步,若每個數字都用不同的局部閾值,則可達到更理想的分割效果。

5.1.1 閾值插值法
首先將圖像分解成系列子圖,由於子圖相對原圖很小,因此受陰影或對比度空間變化等帶來的問題的影響會比較小。然後對每個子圖計算一個局部閾值(此時的閾值可用任何一種固定閾值選取方法)。通過對這些子圖所得到的閾值進行插值,就可以得到對原圖中每個象素進行分割所需要的合理閾值。這里對應每個象素的閾值合起來構成的一個曲面,叫做閾值曲面。

5.1.2 水線閾值演算法
水線(也稱分水嶺或流域,watershed)閾值演算法可以看成是一種特殊的自適應迭代閾值方法,它的基本思想是:初始時,使用一個較大的閾值將兩個目標分開,但目標間的間隙很大;在減小閾值的過程中,兩個目標的邊界會相向擴張,它們接觸前所保留的最後像素集合就給出了目標間的最終邊界,此時也就得到了閾值。

5.1.3 其它的局部閾值法
文獻[30]提出了一種基於閾值曲面的二維遺傳演算法。遺傳演算法是基於進化論中自然選擇機理的、並行的、統計的隨機化搜索方法,所以在圖像處理中常用來確定分割閾值。
文獻[31] [32]中提出一種基於局部梯度最大值的插值方法。首先平滑圖像,並求得具有局部梯度最大值的像素點,然後利用這些像素點的位置和灰度在圖像上內插,得到灰度級閾值表面。
除此之外,典型的局部閾值方法還有White和Rohrer[33]的加權移動平均閾值方法,Perez和Gonzalez[34]的適用於非均勻照射下圖像的局部閾值方法以及Shio[35]的與照射無關的對比度度量閾值方法等。總的來說,這類演算法的時間和空間復雜度都較大,但是抗噪能力強,對一些使用全局閾值法不宜分割的圖像具有較好的效果。

5.2 多閾值法
很顯然,如果圖像中含有占據不同灰度級區域的幾個目標,則需要使用多個閾值才能將它們分開。其實多域值分割,可以看作單閾值分割的推廣,前面討論的大部分閾值化技術,諸如Otsu的最大類間方差法, Kapur的最大熵方法、矩量保持法和最小誤差法等等都可以推廣到多閾值的情形。以下介紹另外幾種多閾值方法。
5.2.1 基於小波的多域值方法。
小波變換的多解析度分析能力也可以用於直方圖分析[36],一種基於直方圖分析的多閾值選取方法思路如下:首先在粗解析度下,根據直方圖中獨立峰的個數確定分割區域的類數,這里要求獨立峰應該滿足三個條件:(1)具有一定的灰度范圍;(2)具有一定的峰下面積;(3)具有一定的峰谷差。然後,在相鄰峰之間確定最佳閾值,這一步可以利用多分辨的層次結構進行。首先在最低解析度一層進行,然後逐漸向高層推進,直到最高解析度。可以基於最小距離判據對在最低層選取的所有閾值逐層跟蹤,最後以最高解析度層的閾值為最佳閾值。
5.2.2 基於邊界點的遞歸多域值方法。
這是一種遞歸的多閾值方法。首先,將象素點分為邊界點和非邊界點兩類,邊界點再根據它們的鄰域的亮度分為較亮的邊界點和較暗的邊界點兩類,然後用這兩類邊界點分別作直方圖,取兩個直方圖中的最高峰多對應的灰度級作為閾值。接下去,再分別對灰度級高於和低於此閾值的像素點遞歸的使用這一方法,直至得到預定的閾值數。

5.2.3 均衡對比度遞歸多域值方法。
首先,對每一個可能閾值計算它對應於它的平均對比度

其中, 是閾值為 時圖像總的對比度, 是閾值 檢測到的邊界點的數目。然後,選擇 的直方圖上的峰值所對應的灰度級為最佳閾值。對於多閾值情形,首先用這種方法確定一個初始閾值,接著,去掉初始閾值檢測到的邊界點的貢獻再做一次 的直方圖,並依據新的直方圖選擇下一個閾值。這一過程可以這樣一直進行下去,直到任何閾值的最大平均對比度小於某個給定的限制為止。

6 閾值化演算法評價簡介
盡管人們在圖像分割方面做了許多研究工作,但由於尚無通用的分割理論,現已提出的分割演算法大都是針對具體問題的,並沒有一種適合於所有圖像的通用的分割演算法。另一方面,給定一個實際圖像分割問題要選擇合用的分割演算法也還沒有標準的方法。為解決這些問題需要研究對圖像分割的評價問題。分割評價是改進和提高現有演算法性能、改善分割質量和指導新演算法研究的重要手段。
然而,如同所有的圖像分割方法一樣,閾值化結果的評價是一個比較困難的問題。事實上對圖像分割本身還缺乏比較系統的精確的研究,因此對其評價則更差一些。人們先後已經提出了幾十個評價准則。這些准則中又有定性的,也有定量的;有分析演算法的,也有檢測實驗結果的,文獻[37]將它們大致分為13類。
文獻[4] 中選擇攝影師、建築物和模特三幅圖像作為標准圖像,並採用趨於一致性度量和形狀參數對幾種常用的全局閾值方法的分割結果進行了評價。結果表明對於這三幅圖像,如果希望得到的二值圖像比較均勻且目標的形狀較好,推薦使用最大熵方法、矩量保持方法和最大類間方差法。
文獻[38] 中以磁碟及鶴模型作標准圖像,在雜訊條件下用錯分概率、形狀和均勻性度量作為標准評估了五種常見的整體閾值選取方法的性能。這五種方法是四元樹方法、矩量保持法、最大類間方差法、最大熵方法和簡單統計法。結果表明各種方法的性能不僅與所處理的圖像有關,而且也和所選用的准則有關。該文獻也指出,對於一般實時應用來說,可以選擇最大類間方差方法和簡單統計法。
最後,評價的目的是為了能指導、改進和提高分割,如何把評價和分割應用聯系起來尚有許多工作要做。一個可能的方法是結合人工智慧技術,建立分割專家系統[45],以有效的利用評價結果進行歸納推理,從而把對圖像的分割由目前比較盲目的試驗階段推進到系統地實現的階段。

『柒』 自動確定圖像二值化最佳閾值的方法

閾值將原圖象分成前景,背景兩個圖象。
前景:用n1, csum, m1來表示在當前閾值下的前景的點數,質量矩,平均灰度
後景:用n2, sum-csum, m2來表示在當前閾值下的背景的點數,質量矩,平均灰度
當取最佳閾值時,背景應該與前景差別最大,關鍵在於如何選擇衡量差別的標准
而在otsu演算法中這個衡量差別的標准就是最大類間方差(英文簡稱otsu,這也就是這個演算法名字的來源)
在本程序中類間方差用sb表示,最大類間方差用fmax
關於最大類間方差法(otsu)的性能:
類間方差法對噪音和目標大小十分敏感,它僅對類間方差為單峰的圖像產生較好的分割效果。
當目標與背景的大小比例懸殊時,類間方差准則函數可能呈現雙峰或多峰,此時效果不好,但是類間方差法是用時最少的。
最大最大類間方差法(otsu)的公式推導:
記t為前景與背景的分割閾值,前景點數占圖像比例為w0, 平均灰度為u0;背景點數占圖像比例為w1,平均灰度為u1。
則圖像的總平均灰度為:u=w0*u0+w1*u1。
前景和背景圖象的方差:g=w0*(u0-u)*(u0-u)+w1*(u1-u)*(u1-u)=w0*w1*(u0-u1)*(u0-u1),此公式為方差公式,可參照概率論課本
上面的g的公式也就是下面程序中的sb的表達式
當方差g最大時,可以認為此時前景和背景差異最大,也就是此時的灰度是最佳閾值

unsafe public int GetThreshValue(Bitmap image)
{
BitmapData bd = image.LockBits(new Rectangle(0, 0, image.Width, image.Height), ImageLockMode.WriteOnly, image.PixelFormat);
byte* pt = (byte*)bd.Scan0;
int[] pixelNum = new int[256]; //圖象直方圖,共256個點
byte color;
byte* pline;
int n, n1, n2;
int total; //total為總和,累計值
double m1, m2, sum, csum, fmax, sb; //sb為類間方差,fmax存儲最大方差值
int k, t, q;
int threshValue = 1; // 閾值
int step = 1;
switch (image.PixelFormat)
{
case PixelFormat.Format24bppRgb:
step = 3;
break;
case PixelFormat.Format32bppArgb:
step = 4;
break;
case PixelFormat.Format8bppIndexed:
step = 1;
break;
}
//生成直方圖
for (int i = 0; i < image.Height; i++)
{
pline = pt + i * bd.Stride;
for (int j = 0; j < image.Width; j++)
{
color = *(pline + j * step); //返回各個點的顏色,以RGB表示
pixelNum[color]++; //相應的直方圖加1
}
}
//直方圖平滑化
for (k = 0; k <= 255; k++)
{
total = 0;
for (t = -2; t <= 2; t++) //與附近2個灰度做平滑化,t值應取較小的值
{
q = k + t;
if (q < 0) //越界處理
q = 0;
if (q > 255)
q = 255;
total = total + pixelNum[q]; //total為總和,累計值
}
pixelNum[k] = (int)((float)total / 5.0 + 0.5); //平滑化,左邊2個+中間1個+右邊2個灰度,共5個,所以總和除以5,後面加0.5是用修正值
}
//求閾值
sum = csum = 0.0;
n = 0;
//計算總的圖象的點數和質量矩,為後面的計算做准備
for (k = 0; k <= 255; k++)
{
sum += (double)k * (double)pixelNum[k]; //x*f(x)質量矩,也就是每個灰度的值乘以其點數(歸一化後為概率),sum為其總和
n += pixelNum[k]; //n為圖象總的點數,歸一化後就是累積概率
}

fmax = -1.0; //類間方差sb不可能為負,所以fmax初始值為-1不影響計算的進行
n1 = 0;
for (k = 0; k < 255; k++) //對每個灰度(從0到255)計算一次分割後的類間方差sb
{
n1 += pixelNum[k]; //n1為在當前閾值遍前景圖象的點數
if (n1 == 0) { continue; } //沒有分出前景後景
n2 = n - n1; //n2為背景圖象的點數
if (n2 == 0) { break; } //n2為0表示全部都是後景圖象,與n1=0情況類似,之後的遍歷不可能使前景點數增加,所以此時可以退出循環
csum += (double)k * pixelNum[k]; //前景的「灰度的值*其點數」的總和
m1 = csum / n1; //m1為前景的平均灰度
m2 = (sum - csum) / n2; //m2為背景的平均灰度
sb = (double)n1 * (double)n2 * (m1 - m2) * (m1 - m2); //sb為類間方差
if (sb > fmax) //如果算出的類間方差大於前一次算出的類間方差
{
fmax = sb; //fmax始終為最大類間方差(otsu)
threshValue = k; //取最大類間方差時對應的灰度的k就是最佳閾值
}
}
image.UnlockBits(bd);
image.Dispose();
return threshValue;
}

『捌』 圖像分割的分割方法

灰度閾值分割 法是一種最常用的並行區域技術,它是圖像分割中應用數量最多的一類。閾值分割方法實際上是輸入圖像f到輸出圖像g的如下變換:
其中,T為閾值,對於物體的圖像元素g(i,j)=1,對於背景的圖像元素g(i,j)=0。
由此可見,閾值分割演算法的關鍵是確定閾值,如果能確定一個合適的閾值就可准確地將圖像分割開來。閾值確定後,將閾值與像素點的灰度值逐個進行比較,而且像素分割可對各像素並行地進行,分割的結果直接給出圖像區域。
閾值分割的優點是計算簡單、運算效率較高、速度快。在重視運算效率的應用場合(如用於硬體實現),它得到了廣泛應用。
人們發展了各種各樣的閾值處理技術,包括全局閾值、自適應閾值、最佳閾值等等。
全局閾值是指整幅圖像使用同一個閾值做分割處理,適用於背景和前景有明顯對比的圖像。它是根據整幅圖像確定的:T=T(f)。但是這種方法只考慮像素本身的灰度值,一般不考慮空間特徵,因而對雜訊很敏感。常用的全局閾值選取方法有利用圖像灰度直方圖的峰谷法、最小誤差法、最大類間方差法、最大熵自動閾值法以及其它一些方法。
在許多情況下,物體和背景的對比度在圖像中的各處不是一樣的,這時很難用一個統一的閾值將物體與背景分開。這時可以根據圖像的局部特徵分別採用不同的閾值進行分割。實際處理時,需要按照具體問題將圖像分成若乾子區域分別選擇閾值,或者動態地根據一定的鄰域范圍選擇每點處的閾值,進行圖像分割。這時的閾值為自適應閾值。
閾值的選擇需要根據具體問題來確定,一般通過實驗來確定。對於給定的圖像,可以通過分析直方圖的方法確定最佳的閾值,例如當直方圖明顯呈現雙峰情況時,可以選擇兩個峰值的中點作為最佳閾值。
圖1(a)和(b)分別為用全局閾值和自適應閾值對經典的Lena圖像進行分割的結果。
區域生長和分裂合並法是兩種典型的串列區域技術,其分割過程後續步驟的處理要根據前面步驟的結果進行判斷而確定。 區域生長 區域生長的基本思想是將具有相似性質的像素集合起來構成區域。具體先對每個需要分割的區域找一個種子像素作為生長的起點,然後將種子像素周圍鄰域中與種子像素有相同或相似性質的像素(根據某種事先確定的生長或相似准則來判定)合並到種子像素所在的區域中。將這些新像素當作新的種子像素繼續進行上面的過程,直到再沒有滿足條件的像素可被包括進來。這樣一個區域就長成了。
區域生長需要選擇一組能正確代表所需區域的種子像素,確定在生長過程中的相似性准則,制定讓生長停止的條件或准則。相似性准則可以是灰度級、彩色、紋理、梯度等特性。選取的種子像素可以是單個像素,也可以是包含若干個像素的小區域。大部分區域生長准則使用圖像的局部性質。生長准則可根據不同原則制定,而使用不同的生長准則會影響區域生長的過程。區域生長法的優點是計算簡單,對於較均勻的連通目標有較好的分割效果。它的缺點是需要人為確定種子點,對雜訊敏感,可能導致區域內有空洞。另外,它是一種串列演算法,當目標較大時,分割速度較慢,因此在設計演算法時,要盡量提高效率。
區域分裂合並
區域生長是從某個或者某些像素點出發,最後得到整個區域,進而實現目標提取。分裂合並差不多是區域生長的逆過程:從整個圖像出發,不斷分裂得到各個子區域,然後再把前景區域合並,實現目標提取。分裂合並的假設是對於一幅圖像,前景區域由一些相互連通的像素組成的,因此,如果把一幅圖像分裂到像素級,那麼就可以判定該像素是否為前景像素。當所有像素點或者子區域完成判斷以後,把前景區域或者像素合並就可得到前景目標。
在這類方法中,最常用的方法是四叉樹分解法(如圖3所示)。設R代表整個正方形圖像區域,P代表邏輯謂詞。基本分裂合並演算法步驟如下:(1)對任一個區域,如果H(Ri)=FALSE就將其分裂成不重疊的四等份;
(2)對相鄰的兩個區域Ri和Rj,它們也可以大小不同(即不在同一層),如果條件H(Ri∪Rj)=TRUE滿足,就將它們合並起來。
(3)如果進一步的分裂或合並都不可能,則結束。
分裂合並法的關鍵是分裂合並准則的設計。這種方法對復雜圖像的分割效果較好,但演算法較復雜,計算量大,分裂還可能破壞區域的邊界。 圖像分割的一種重要途徑是通過邊緣檢測,即檢測灰度級或者結構具有突變的地方,表明一個區域的終結,也是另一個區域開始的地方。這種不連續性稱為邊緣。不同的圖像灰度不同,邊界處一般有明顯的邊緣,利用此特徵可以分割圖像。
圖像中邊緣處像素的灰度值不連續,這種不連續性可通過求導數來檢測到。對於階躍狀邊緣,其位置對應一階導數的極值點,對應二階導數的過零點(零交叉點)。因此常用微分運算元進行邊緣檢測。常用的一階微分運算元有Roberts運算元、Prewitt運算元和Sobel運算元,二階微分運算元有Laplace運算元和Kirsh運算元等。在實際中各種微分運算元常用小區域模板來表示,微分運算是利用模板和圖像卷積來實現。這些運算元對雜訊敏感,只適合於雜訊較小不太復雜的圖像。
由於邊緣和雜訊都是灰度不連續點,在頻域均為高頻分量,直接採用微分運算難以克服雜訊的影響。因此用微分運算元檢測邊緣前要對圖像進行平滑濾波。LoG運算元和Canny運算元是具有平滑功能的二階和一階微分運算元,邊緣檢測效果較好,如圖4所示。其中loG運算元是採用Laplacian運算元求高斯函數的二階導數,Canny運算元是高斯函數的一階導數,它在雜訊抑制和邊緣檢測之間取得了較好的平衡。關於微分運算元的邊緣檢測的詳細內容可參考文獻 。 與其他圖像分割方法相比,基於直方圖的方法是非常有效的圖像分割方法,因為他們通常只需要一個通過像素。在這種方法中,直方圖是從圖像中的像素的計算,並在直方圖的波峰和波谷是用於定點陣圖像中的簇。顏色和強度可以作為衡量。
這種技術的一種改進是遞歸應用直方圖求法的集群中的形象以分成更小的簇。重復此操作,使用更小的簇直到沒有更多的集群的形成。
基於直方圖的方法也能很快適應於多個幀,同時保持他們的單通效率。直方圖可以在多個幀被考慮的時候採取多種方式。同樣的方法是採取一個框架可以應用到多個,和之後的結果合並,山峰和山谷在以前很難識別,但現在更容易區分。直方圖也可以應用於每一個像素的基礎上,將得到的信息被用來確定的像素點的位置最常見的顏色。這種方法部分基於主動對象和一個靜態的環境,導致在不同類型的視頻分割提供跟蹤。

『玖』 閥值法是什麼方法

閥值(Threshold):決定多大反差的相鄰像素邊界可以被銳化處理,而低於此反差值就不作銳化。閥值的設置是避免因銳化處理而導致的斑點和麻點等問題的關鍵參數,正確設置後就可以使圖像既保持平滑的自然色調(例如背景中純藍色的天空)的完美,又可以對變化細節的反差作出強調。在一般的印前處理中我們推薦的值為3到4,超過10是不可取的,它們會降低銳化處理效果並使圖像顯得很難看。

『拾』 圖像分割

圖像閾值化分割是一種傳統的最常用的圖像分割方法,因其實現簡單、計算量小、性能較穩定而成為圖像分割中最基本和應用最廣泛的分割技術。它特別適用於目標和背景占據不同灰度級范圍的圖像。它不僅可以極大的壓縮數據量,而且也大大簡化了分析和處理步驟,因此在很多情況下,是進行圖像分析、特徵提取與模式識別之前的必要的圖像預處理過程。

圖像閾值化的目的是要按照灰度級,對像素集合進行一個劃分,得到的每個子集形成一個與現實景物相對應的區域,各個區域內部具有一致的屬性,而相鄰區域不具有這種一致屬性。這樣的劃分可以通過從灰度級出發選取一個或多個閾值來實現。

基本原理是:通過設定不同的特徵閾值,把圖像象素點分為若干類。
常用的特徵包括:直接來自原始圖像的灰度或彩色特徵;由原始灰度或彩色值變換得到的特徵。
設原始圖像為f(x,y),按照一定的准則f(x,y)中找到特徵值T,將圖像分割為兩個部分,分割後的圖像為:
若取:b0=0(黑),b1=1(白),即為我們通常所說的圖像二值化。

閾值分割方法實際上是輸入圖像f到輸出圖像g的如下變換:

其中,T為閾值,對於物體的圖像元素g(i,j)=1,對於背景的圖像元素g(i,j)=0。

由此可見,閾值分割演算法的關鍵是確定閾值,如果能確定一個合適的閾值就可准確地將圖像分割開來。閾值確定後,將閾值與像素點的灰度值逐個進行比較,而且像素分割可對各像素並行地進行,分割的結果直接給出圖像區域。
閾值分割的優點是計算簡單、運算效率較高、速度快。有著各種各樣的閾值處理技術,包括全局閾值、自適應閾值、最佳閾值等等。

閾值處理技術參看:

區域分割是講圖像按照相似性准則分成不同的區域,主要包括區域增長,區域分裂合並和分水嶺等幾種類型。

區域生長是一種串列區域分割的圖像分割方法。區域生長是指從某個像素出發,按照一定的准則,逐步加入鄰近像素,當滿足一定的條件時,區域生長終止。區域生長的好壞決定於1. 初始點(種子點)的選取。 2. 生長准則。 3. 終止條件 。區域生長是從某個或者某些像素點出發,最後得到整個區域,進而實現目標的提取。

區域生長的基本思想是將具有相似性質的像素集合起來構成區域。具體先對每個需要分割的區域找一個種子像素作為生長的起點,然後將種子像素周圍鄰域中與種子像素有相同或相似性質的像素(根據某種事先確定的生長或相似准則來判定)合並到種子像素所在的區域中。將這些新像素當作新的種子像素繼續進行上面的過程,直到再沒有滿足條件的像素可被包括進來。這樣一個區域就長成了。

區域生長需要選擇一組能正確代表所需區域的種子像素,確定在生長過程中的相似性准則,制定讓生長停止的條件或准則。相似性准則可以是灰度級、彩色、紋理、梯度等特性。選取的種子像素可以是單個像素,也可以是包含若干個像素的小區域。大部分區域生長准則使用圖像的局部性質。生長准則可根據不同原則制定,而使用不同的生長准則會影響區域生長的過程。

圖1是區域增長的示例。

區域生長是一種古老的圖像分割方法,最早的區域生長圖像分割方法是由Levine等人提出的。該方法一般有兩種方式,一種是先給定圖像中要分割的目標物體內的一個小塊或者說種子區域(seed point),再在種子區域基礎上不斷將其周圍的像素點以一定的規則加入其中,達到最終將代表該物體的所有像素點結合成一個區域的目的;另一種是先將圖像分割成很多的一致性較強,如區域內像素灰度值相同的小區域,再按一定的規則將小區域融合成大區域,達到分割圖像的目的,典型的區域生長法如T. C. Pong等人提出的基於小面(facet)模型的區域生長法,區域生長法固有的缺點是往往會造成過度分割,即將圖像分割成過多的區域

區域生長實現的步驟如下:

區域分裂合並演算法的基本思想是先確定一個分裂合並的准則,即區域特徵一致性的測度,當圖像中某個區域的特徵不一致時就將該區域分裂成4個相等的子區域,當相鄰的子區域滿足一致性特徵時則將它們合成一個大區域,直至所有區域不再滿足分裂合並的條件為止。當分裂到不能再分的情況時,分裂結束,然後它將查找相鄰區域有沒有相似的特徵,如果有就將相似區域進行合並,最後達到分割的作用。在一定程度上區域生長和區域分裂合並演算法有異曲同工之妙,互相促進相輔相成的,區域分裂到極致就是分割成單一像素點,然後按照一定的測量准則進行合並,在一定程度上可以認為是單一像素點的區域生長方法。區域生長比區域分裂合並的方法節省了分裂的過程,而區域分裂合並的方法可以在較大的一個相似區域基礎上再進行相似合並,而區域生長只能從單一像素點出發進行生長(合並)。

反復進行拆分和聚合以滿足限制條件的演算法。

令R表示整幅圖像區域並選擇一個謂詞P。對R進行分割的一種方法是反復將分割得到的結果圖像再次分為四個區域,直到對任何區域Ri,有P(Ri)=TRUE。這里是從整幅圖像開始。如果P(R)=FALSE,就將圖像分割為4個區域。對任何區域如果P的值是FALSE.就將這4個區域的每個區域再次分別分為4個區域,如此不斷繼續下去。這種特殊的分割技術用所謂的四叉樹形式表示最為方便(就是說,每個非葉子節點正好有4個子樹),這正如圖10.42中說明的樹那樣。注意,樹的根對應於整幅圖像,每個節點對應於劃分的子部分。此時,只有R4進行了進一步的再細分。

如果只使用拆分,最後的分區可能會包含具有相同性質的相鄰區域。這種缺陷可以通過進行拆分的同時也允許進行區域聚合來得到矯正。就是說,只有在P(Rj∪Rk)=TRUE時,兩個相鄰的區域Rj和Rk才能聚合。
前面的討論可以總結為如下過程。在反復操作的每一步,我們需要做:

可以對前面講述的基本思想進行幾種變化。例如,一種可能的變化是開始時將圖像拆分為一組圖象塊。然後對每個塊進一步進行上述拆分,但聚合操作開始時受只能將4個塊並為一組的限制。這4個塊是四叉樹表示法中節點的後代且都滿足謂詞P。當不能再進行此類聚合時,這個過程終止於滿足步驟2的最後的區域聚合。在這種情況下,聚合的區域可能會大小不同。這種方法的主要優點是對於拆分和聚合都使用同樣的四叉樹,直到聚合的最後一步。

分水嶺分割方法,是一種基於拓撲理論的數學形態學的分割方法,其基本思想是把圖像看作是測地學上的拓撲地貌,圖像中每一點像素的灰度值表示該點的海拔高度,每一個局部極小值及其影響區域稱為集水盆,而集水盆的邊界則形成分水嶺。分水嶺的概念和形成可以通過模擬浸入過程來說明。在每一個局部極小值表面,刺穿一個小孔,然後把整個模型慢慢浸入水中,隨著浸入的加深,每一個局部極小值的影響域慢慢向外擴展,在兩個集水盆匯合處構築大壩,即形成分水嶺。

分水嶺的計算過程是一個迭代標注過程。分水嶺比較經典的計算方法是L. Vincent提出的。在該演算法中,分水嶺計算分兩個步驟,一個是排序過程,一個是淹沒過程。首先對每個像素的灰度級進行從低到高排序,然後在從低到高實現淹沒過程中,對每一個局部極小值在h階高度的影響域採用先進先出(FIFO)結構進行判斷及標注。

分水嶺變換得到的是輸入圖像的集水盆圖像,集水盆之間的邊界點,即為分水嶺。顯然,分水嶺表示的是輸入圖像極大值點。因此,為得到圖像的邊緣信息,通常把梯度圖像作為輸入圖像,即

分水嶺演算法對微弱邊緣具有良好的響應,圖像中的雜訊、物體表面細微的灰度變化,都會產生過度分割的現象。但同時應當看出,分水嶺演算法對微弱邊緣具有良好的響應,是得到封閉連續邊緣的保證的。另外,分水嶺演算法所得到的封閉的集水盆,為分析圖像的區域特徵提供了可能。
為消除分水嶺演算法產生的過度分割,通常可以採用兩種處理方法,一是利用先驗知識去除無關邊緣信息。二是修改梯度函數使得集水盆只響應想要探測的目標。

為降低分水嶺演算法產生的過度分割,通常要對梯度函數進行修改,一個簡單的方法是對梯度圖像進行閾值處理,以消除灰度的微小變化產生的過度分割。即

程序可採用方法:用閾值限制梯度圖像以達到消除灰度值的微小變化產生的過度分割,獲得適量的區域,再對這些區域的邊緣點的灰度級進行從低到高排序,然後在從低到高實現淹沒的過程,梯度圖像用Sobel運算元計算獲得。對梯度圖像進行閾值處理時,選取合適的閾值對最終分割的圖像有很大影響,因此閾值的選取是圖像分割效果好壞的一個關鍵。缺點:實際圖像中可能含有微弱的邊緣,灰度變化的數值差別不是特別明顯,選取閾值過大可能會消去這些微弱邊緣。

參考文章:

圖像分割的一種重要途徑是通過邊緣檢測,即檢測灰度級或者結構具有突變的地方,表明一個區域的終結,也是另一個區域開始的地方。這種不連續性稱為邊緣。不同的圖像灰度不同,邊界處一般有明顯的邊緣,利用此特徵可以分割圖像。

圖像中邊緣處像素的灰度值不連續,這種不連續性可通過求導數來檢測到。對於階躍狀邊緣,其位置對應一階導數的極值點,對應二階導數的過零點(零交叉點)。因此常用微分運算元進行邊緣檢測。常用的一階微分運算元有Roberts運算元、Prewitt運算元和Sobel運算元,二階微分運算元有Laplace運算元和Kirsh運算元等。在實際中各種微分運算元常用小區域模板來表示,微分運算是利用模板和圖像卷積來實現。這些運算元對雜訊敏感,只適合於雜訊較小不太復雜的圖像。

由於邊緣和雜訊都是灰度不連續點,在頻域均為高頻分量,直接採用微分運算難以克服雜訊的影響。因此用微分運算元檢測邊緣前要對圖像進行平滑濾波。LoG運算元和Canny運算元是具有平滑功能的二階和一階微分運算元,邊緣檢測效果較好,

在邊緣檢測演算法中,前三個步驟用得十分普遍。這是因為大多數場合下,僅僅需要邊緣檢測器指出邊緣出現在圖像某一像素點的附近,而沒有必要指出邊緣的精確位置或方向.邊緣檢測誤差通常是指邊緣誤分類誤差,即把假邊緣判別成邊緣而保留,而把真邊緣判別成假邊緣而去掉.邊緣估計誤差是用概率統計模型來描述邊緣的位置和方向誤差的.我們將邊緣檢測誤差和邊緣估計誤差區分開,是因為它們的計算方法完全不同,其誤差模型也完全不同.

Roberts運算元 :邊緣定位準,但是對雜訊敏感。適用於邊緣明顯且雜訊較少的圖像分割。Roberts邊緣檢測運算元是一種利用局部差分運算元尋找邊緣的運算元,Robert運算元圖像處理後結果邊緣不是很平滑。經分析,由於Robert運算元通常會在圖像邊緣附近的區域內產生較寬的響應,故採用上述運算元檢測的邊緣圖像常需做細化處理,邊緣定位的精度不是很高。

Prewitt運算元 :對雜訊有抑製作用,抑制雜訊的原理是通過像素平均,但是像素平均相當於對圖像的低通濾波,所以Prewitt運算元對邊緣的定位不如Roberts運算元。

Sobel運算元 :Sobel運算元和Prewitt運算元都是加權平均,但是Sobel運算元認為,鄰域的像素對當前像素產生的影響不是等價的,所以距離不同的像素具有不同的權值,對運算元結果產生的影響也不同。一般來說,距離越遠,產生的影響越小。

Isotropic Sobel運算元 :加權平均運算元,權值反比於鄰點與中心點的距離,當沿不同方向檢測邊緣時梯度幅度一致,就是通常所說的各向同性。
在邊沿檢測中,常用的一種模板是Sobel 運算元。Sobel 運算元有兩個,一個是檢測水平邊沿的;另一個是檢測垂直平邊沿的 。Sobel運算元另一種形式是各向同性Sobel(Isotropic Sobel)運算元,也有兩個,一個是檢測水平邊沿的,另一個是檢測垂直平邊沿的 。各向同性Sobel運算元和普通Sobel運算元相比,它的位置加權系數更為准確,在檢測不同方向的邊沿時梯度的幅度一致。由於建築物圖像的特殊性,我們可以發現,處理該類型圖像輪廓時,並不需要對梯度方向進行運算,所以程序並沒有給出各向同性Sobel運算元的處理方法。

1971年,R.Kirsch[34]提出了一種能檢測邊緣方向的Kirsch運算元新方法:它使用了8個模板來確定梯度幅度值和梯度的方向。

圖像中的每個點都用8個掩模進行卷積,每個掩模對某個特定邊緣方向作出最大響應。所有8個方向中的最大值作為邊緣幅度圖像的輸出。最大響應掩模的序號構成了對邊緣方向的編碼。
Kirsch運算元的梯度幅度值用如下公式:

不同檢測運算元的對比:

參考文章:

文章引用於 木夜溯
編輯 Lornatang
校準 Lornatang

閱讀全文

與最佳閾值方法就是使圖像相關的資料

熱點內容
iphone手機感應器在哪裡設置方法 瀏覽:268
釘釘電腦授課方法 瀏覽:413
分析案例學方法幼兒園教研記錄 瀏覽:609
懷疑懷孕的最好檢測方法 瀏覽:535
真假鑒別最簡單的方法 瀏覽:517
確定元素常用的方法 瀏覽:622
一個職業規劃的簡單方法 瀏覽:485
水楊酸甘油酊使用方法 瀏覽:738
什麼樣的方法能找到遺失的圖釘 瀏覽:867
纖至美豐胸使用方法 瀏覽:964
耳朵堵了有什麼方法解決 瀏覽:253
和田藏青玉的鑒別方法 瀏覽:204
提煉dha的最佳方法 瀏覽:680
獨立顯卡的安裝方法 瀏覽:104
半導體失效分析方法 瀏覽:48
手機壓縮包密碼取消方法 瀏覽:256
修水窖解決方法 瀏覽:172
紅米的分屏在哪裡設置方法 瀏覽:95
電視機背景牆石膏線安裝方法 瀏覽:692
vivo設置圖標在哪裡設置方法 瀏覽:821