Ⅰ 請問:分層燃燒技術是什麼意思
FSI是Fuel Stratified Injection的詞頭縮寫,意指燃油分層噴射。燃油分層噴射技術是發動機稀燃技術的一種。什麼叫稀燃?顧名思義就是發動機混合氣中的汽油含量低,汽油與空氣之比可達1:25以上。
大眾FSI發動機利用一個高壓泵,使汽油通過一個分流軌道(共軌)到達電磁控制的高壓噴射氣門。它的特點是在進氣道中已經產生可變渦流,使進氣流形成最佳的渦流形態進入燃燒室內,以分層填充的方式推動,使混合氣體集中在位於燃燒室中央的火花塞周圍。如果稀燃技術的混合比達到25:1以上,按照常規是無法點燃的,因此必須採用由濃至稀的分層燃燒方式。通過缸內空氣的運動在火花塞周圍形成易於點火的濃混合氣,混合比達到12:1左右,外層逐漸稀薄。濃混合氣點燃後,燃燒迅速波及外層。
FSI特點是:能夠降低泵吸損失,在低負荷時確保低油耗,但需要增加特殊催化轉換器以有效凈化處理排放氣體。下面分別詳細闡述:
FSI發動機按照發動機負荷工況,基本上可以自動選擇2種運行模式。在低負荷時為分層稀薄燃燒,在高負荷時則為均質理論空燃比(14.6-14.7)燃燒。在這兩種運行模式中,燃料的噴射時間有所不同,真空作動的開關閥進行開啟/關閉。在高負荷中所進行的均質理論空燃比燃燒中,燃油則是在進氣沖程中噴射。理論空燃比的均質混合氣易於燃燒,不必藉助渦流作用,因此,由於進氣阻力減少,開關閥打開。而在全負荷以外,進行廢氣再循環,限制泵吸損失,由於直噴化而使壓縮比提高到12.1,即使在均質理論空燃燒比混合氣燃燒中,仍能降低燃油耗。進一步說,在FSI發動機中,在低負荷與高負荷之間,作為第三運行模式而設定均質稀薄燃燒,在這種運行模式中,燃油在進氣沖程噴射,並且由於產生加速稀薄混合氣燃燒的縱渦流,開關閥被關閉。這時,阻礙燃燒的廢氣再循環(EGR)暫不進行。與均質理論空燃比燃燒不同的是,吸入空氣量超過燃油的噴射量。
如上所述,根據FSI發動機運轉狀態,在分層稀薄燃燒到均質理論空燃比燃燒過程中,空燃比連續變化。因此,三效催化轉化器不能夠凈化排放氣體中的NOx。這是因為三效催化轉化器要利用排氣中的HC或CO進行NOx還原反應的緣故。在稀薄燃燒中,在排放氣體中殘留很多氧氣,不能進行NOx還原反應。為了使NOx吸儲型催化劑獲得高效功能,其溫度必須保持在250-500℃范圍內。當超過這一溫度范圍發動機會自動轉換到均質理論空燃比燃燒,並通過三效催化轉化器進行廢氣處理。然而這又與燃油經濟性下降相關,為此,必須增加廢氣冷卻裝置。利用這種冷卻裝置,排放氣體通過NOx吸儲型催化轉化而被冷卻,由於稀薄燃燒的范圍寬,催化轉化器的壽命也延長。然而,NOx吸儲型催化轉化器會受到硫侵蝕而中毒,所以必須把汽油中的含硫量盡量降低到最少。但是,如前所述,含硫低的汽油不是到處能供應的。大眾汽車公司採取的措施是,把催化劑反應溫度提高到650°以上,從而把附著在催化劑上的硫通過燃燒而加以消除。
在高速行駛時,能夠保持這樣高的催化劑溫度,但是,在城市內行駛時則催化劑溫度下降,就不能燒除附著在催化劑的硫。為此,通過NOx感測器監視硫附著在催化劑上的程度,根據監測情況提高排放氣體的溫度。作為其措施,一般採用點火正時延遲,盡管這樣做會引起燃油經濟性惡化,但是為了凈化處理NOx,這是不得已而為之。
Ⅱ 缸內直噴是怎麼分層燃燒的
分層燃燒主要是通過控制混合氣的濃度分布來實現的,其在火花塞附近混合氣比較濃,空燃比約 為12~13,保證可靠的點火,在其餘大部分區域混合氣較稀,空燃比在20以上。目前分層燃燒的實現方式主要有兩種,一種是利用氣流運動(主要是渦流)使混合氣濃度分布不同,實現分層燃燒。另外一種是採用燃油噴射器二次噴射,從而實現燃油濃度的分層。第一種一般是採用立式吸氣口方式,從氣缸蓋的上方吸氣的獨特方式產生強大的下沉氣流。這種下沉氣流在彎曲頂面活塞附近得到加強並在氣缸內形成縱向渦旋轉流。在高壓旋轉噴注器的作用下,壓縮過程後期被直接噴注進氣缸內的燃料形成濃密的噴霧,噴霧在彎曲頂面活塞的頂面空間中不是擴散而是氣化。這種混和氣被縱向渦旋轉流帶到火花塞附近,在火花塞四周形成較濃的層狀混和狀態。這種混合狀態雖從燃燒室整體來看十分稀薄,但由於呈現從濃厚到稀薄的層狀分布,因此能保證點火並實現穩定燃燒。但是這種分層方式需要設計較好的活塞頂面,從而引導氣流運動。因此這種方式較少使用。另外一種分層燃燒的實現方式是採用燃油噴射器二次噴施的技術,進氣沖程中隨著活塞下行,燃油噴射器第一次噴射出少量燃油,使燃油隨著活塞的運動在汽缸中形成均勻的稀混合氣。在壓縮沖程中當活塞快上行至上止點時,燃油噴射器第二次噴油,這時使火花塞附近形成較濃混合氣,此時火花塞跳火點燃其附近的濃混合氣,火面逐步向外擴散點燃稀混合氣,從而實現分層燃燒。
來自王成潤 缸內直噴與分層燃燒技術
Ⅲ 什麼是TSI汽車發動機中的分層燃燒技術
大眾的TSI技術(Twincharger Stratified Injection)指雙增壓(渦輪和機械增壓)分層噴射技術。 渦輪增壓的原理是利用發動機排出的廢氣慣性沖力來推動渦輪室內的渦輪,渦輪又帶動同軸的葉輪,葉輪壓送由空氣濾清器管道送來的空氣,使之增壓進入汽缸,空氣的壓力和密度增大可以燃燒更多的燃料,發動機的輸出功率就得到了較大的提升。增壓帶來的好處是「既讓馬兒跑得快,又讓馬兒吃得少」,通常情況下加裝渦輪增壓器以後的發動機功率和扭矩要提高20%-40%,但廢氣渦輪在結構簡單,性能突出的背後也有它的弊端,由於葉輪的慣性作用對油門的突然變化反應遲緩,在急加速的情況下,會有短暫的發動機「不出力」的現象。此外,廢氣渦輪依靠發動機油散熱,工作時過高的溫度和超過每分鍾30000次的轉速都會讓渦輪增壓器在保養或使用不當時成為易損部件。渦輪增壓發動機在較低和較高轉速時都有一個動力的空擋,為了進一步提高發動機的效率,增加一個機械增壓裝置,並讓它在低轉速時加大進氣壓力。而渦輪增壓器的尺寸可以再增大一些,去彌補高轉速時的動力空擋,從而達到一個從低到高轉速的全段優異動力表現.
Ⅳ 缸內直噴中的分層燃燒是什麼意思
分層燃燒的好處在於熱效率高、節流損失少、有限的燃料盡可能多地轉化成工作能量。分層燃燒模式下節氣門不完全打開,保證進氣管內有一定真空度(可以控制廢氣再循環和碳罐等裝置)。這時,發動機的扭矩大小取決於噴油量,與進氣量和點火提前角關系不大。
分層燃燒模式在進氣過程中節氣門開度相對較大,減少了一部分節流損失。進氣過程中的關鍵是進氣歧管中安置一翻版,翻版向上開啟(原理性質,實際機型可能有所不同)封住下進氣歧管,讓進氣加速通過,與ω形活塞頂配合,相成進氣渦旋。
分層燃燒時噴油時間在上止點前60°至上止點前45°,噴射時刻對混合氣的形成有很大影響,燃油被噴射在活塞頂的凹坑內,噴出的燃油與渦旋進氣結合形成混合氣。混合氣形成發生在曲軸轉角40°至50°范圍內,如果小於這個范圍,混合氣無法點燃,若大於,就變成均質狀態了。分層燃燒的過量空氣系數一般在1.6-3之間。
2.點火時,只有火花塞周圍混合狀態較好的氣體被點燃,這時周圍的新鮮空氣以及來自廢氣再循環的氣體形成了很好的隔熱保護,減少了缸臂散熱,提升了熱效率。點火時刻的控制也很重要,它只在壓縮過程終了的一個很窄的范圍內。
均質稀燃模式混合氣形成時間長,燃燒均勻,通過精確控制噴油,可以達到較低的混合氣濃度。均質稀燃的點火時間選擇范圍寬泛,有很好的燃油經濟性。 ㊣ 均質稀燃與分層燃燒的進氣過程相同,油氣混合時間加長,形成均質混合氣。燃燒發生在整個燃燒室內,對點火時間的要求沒分層燃燒那麼嚴格。均質稀燃的過量空氣系數大於1。
3.均質燃燒則能充分發揮動態響應好,扭矩和功率高的特點。均質燃燒進氣過程中節氣門位置由油門踏板決定,進氣歧管中的翻版位置視不同情況而定。當中等負荷時,翻版依然是關閉的,有利於形成強烈的進氣旋流,利於混合氣的形成與霧化。當高速大負荷時,翻版打開,增大進氣量,讓更多的空氣參與燃燒。均質燃燒的噴油、混合氣形成與燃燒和均質稀燃模式基本一樣。均質燃燒情況下過量空氣系數小於或等於1。 以上三種燃燒狀態是FSI發動機特有的燃燒控制模式,但其中有些方面還停留在理論優勢方面。現在奧迪在全球發布的FSI發動機還都採用均質燃燒模式,這不是說分層燃燒不可實現,而只是說分層燃燒實施的成本或時機還不成熟。主要表現在分層燃燒用稀混合氣,提高了缸內溫度也提高了氮氧化物這樣的有害排放物。對於稀混合氣,普通的三元催化器很難把氮氧化物轉換干凈,那麼需要額外的降低氮氧化物的催化轉換器,無疑加重了空間和成本的負擔。另外,現階段高硫含量的汽油對此催化器損害很大,因此還有改造煉油設備,提升燃油品質的成本。
沒有了分層燃燒會不會讓FSI發動機的原有優勢盪然無存?答案是否定的。即使沒有應用分層燃燒,FSI發動機還有能提升壓縮比,降低燃燒殘油量的特點。FSI發動機採用缸內直噴,汽油在缸內蒸發產生內部冷卻效果,這樣就降低了爆震的可能性,可適當提升壓縮比。而進氣渦旋與氣門正時的配合能使沒燃燒的殘油得到良好的再利用。這樣,FSI發動機仍能在提高動力,降低油耗方面有較大的作為。
FSI發動機產生的效果可以從奧迪公司公布的發動機指標看出來。以3.2升FSI和4.2升FSI為例,對比的機型分別是以前的3.0升和4.2升汽油機。功率上,3.2升FSI發動機是257馬力,比原機型的218馬力提升了39馬力,4.2升FSI發動機的350馬力比原機型的335馬力提升了15馬力;在最大扭矩上,是3.2升FSI的330牛米對原機型的290牛米,4.2升FSI的440對原機型的420牛米。
Ⅳ 什麼是汽車分層燃燒技術啊
1、FSI是Fuel Stratified Injection的詞頭縮寫,意指燃油分層噴射。燃油分層噴射技術是發動機稀燃技術的一種。什麼叫稀燃?顧名思義就是發動機混合氣中的汽油含量低,汽油與空氣之比可達1:25以上。
大眾FSI發動機利用一個高壓泵,使汽油通過一個分流軌道(共軌)到達電磁控制的高壓噴射氣門。它的特點是在進氣道中已經產生可變渦流,使進氣流形成最佳的渦流形態進入燃燒室內,以分層填充的方式推動,使混合氣體集中在位於燃燒室中央的火花塞周圍。如果稀燃技術的混合比達到25:1以上,按照常規是無法點燃的,因此必須採用由濃至稀的分層燃燒方式。通過缸內空氣的運動在火花塞周圍形成易於點火的濃混合氣,混合比達到12:1左右,外層逐漸稀薄。濃混合氣點燃後,燃燒迅速波及外層。
FSI特點是:能夠降低泵吸損失,在低負荷時確保低油耗,但需要增加特殊催化轉換器以有效凈化處理排放氣體。下面分別詳細闡述:
FSI發動機按照發動機負荷工況,基本上可以自動選擇2種運行模式。在低負荷時為分層稀薄燃燒,在高負荷時則為均質理論空燃比(14.6-14.7)燃燒。在這兩種運行模式中,燃料的噴射時間有所不同,真空作動的開關閥進行開啟/關閉。在高負荷中所進行的均質理論空燃比燃燒中,燃油則是在進氣沖程中噴射。理論空燃比的均質混合氣易於燃燒,不必藉助渦流作用,因此,由於進氣阻力減少,開關閥打開。而在全負荷以外,進行廢氣再循環,限制泵吸損失,由於直噴化而使壓縮比提高到12.1,即使在均質理論空燃燒比混合氣燃燒中,仍能降低燃油耗。進一步說,在FSI發動機中,在低負荷與高負荷之間,作為第三運行模式而設定均質稀薄燃燒,在這種運行模式中,燃油在進氣沖程噴射,並且由於產生加速稀薄混合氣燃燒的縱渦流,開關閥被關閉。這時,阻礙燃燒的廢氣再循環(EGR)暫不進行。與均質理論空燃比燃燒不同的是,吸入空氣量超過燃油的噴射量。
如上所述,根據FSI發動機運轉狀態,在分層稀薄燃燒到均質理論空燃比燃燒過程中,空燃比連續變化。因此,三效催化轉化器不能夠凈化排放氣體中的NOx。這是因為三效催化轉化器要利用排氣中的HC或CO進行NOx還原反應的緣故。在稀薄燃燒中,在排放氣體中殘留很多氧氣,不能進行NOx還原反應。為了使NOx吸儲型催化劑獲得高效功能,其溫度必須保持在250-500℃范圍內。當超過這一溫度范圍發動機會自動轉換到均質理論空燃比燃燒,並通過三效催化轉化器進行廢氣處理。然而這又與燃油經濟性下降相關,為此,必須增加廢氣冷卻裝置。利用這種冷卻裝置,排放氣體通過NOx吸儲型催化轉化而被冷卻,由於稀薄燃燒的范圍寬,催化轉化器的壽命也延長。然而,NOx吸儲型催化轉化器會受到硫侵蝕而中毒,所以必須把汽油中的含硫量盡量降低到最少。但是,如前所述,含硫低的汽油不是到處能供應的。大眾汽車公司採取的措施是,把催化劑反應溫度提高到650°以上,從而把附著在催化劑上的硫通過燃燒而加以消除。
在高速行駛時,能夠保持這樣高的催化劑溫度,但是,在城市內行駛時則催化劑溫度下降,就不能燒除附著在催化劑的硫。為此,通過NOx感測器監視硫附著在催化劑上的程度,根據監測情況提高排放氣體的溫度。作為其措施,一般採用點火正時延遲,盡管這樣做會引起燃油經濟性惡化,但是為了凈化處理NOx,這是不得已而為之。
Ⅵ 什麼是汽車分層燃燒技術
1、FSI是Fuel Stratified Injection的詞頭縮寫,意指燃油分層噴射。燃油分層噴射技術是發動機稀燃技術的一種。什麼叫稀燃?顧名思義就是發動機混合氣中的汽油含量低,汽油與空氣之比可達1:25以上。
大眾FSI發動機利用一個高壓泵,使汽油通過一個分流軌道(共軌)到達電磁控制的高壓噴射氣門。它的特點是在進氣道中已經產生可變渦流,使進氣流形成最佳的渦流形態進入燃燒室內,以分層填充的方式推動,使混合氣體集中在位於燃燒室中央的火花塞周圍。如果稀燃技術的混合比達到25:1以上,按照常規是無法點燃的,因此必須採用由濃至稀的分層燃燒方式。通過缸內空氣的運動在火花塞周圍形成易於點火的濃混合氣,混合比達到12:1左右,外層逐漸稀薄。濃混合氣點燃後,燃燒迅速波及外層。
FSI特點是:能夠降低泵吸損失,在低負荷時確保低油耗,但需要增加特殊催化轉換器以有效凈化處理排放氣體。下面分別詳細闡述:
FSI發動機按照發動機負荷工況,基本上可以自動選擇2種運行模式。在低負荷時為分層稀薄燃燒,在高負荷時則為均質理論空燃比(14.6-14.7)燃燒。在這兩種運行模式中,燃料的噴射時間有所不同,真空作動的開關閥進行開啟/關閉。在高負荷中所進行的均質理論空燃比燃燒中,燃油則是在進氣沖程中噴射。理論空燃比的均質混合氣易於燃燒,不必藉助渦流作用,因此,由於進氣阻力減少,開關閥打開。而在全負荷以外,進行廢氣再循環,限制泵吸損失,由於直噴化而使壓縮比提高到12.1,即使在均質理論空燃燒比混合氣燃燒中,仍能降低燃油耗。進一步說,在FSI發動機中,在低負荷與高負荷之間,作為第三運行模式而設定均質稀薄燃燒,在這種運行模式中,燃油在進氣沖程噴射,並且由於產生加速稀薄混合氣燃燒的縱渦流,開關閥被關閉。這時,阻礙燃燒的廢氣再循環(EGR)暫不進行。與均質理論空燃比燃燒不同的是,吸入空氣量超過燃油的噴射量。
如上所述,根據FSI發動機運轉狀態,在分層稀薄燃燒到均質理論空燃比燃燒過程中,空燃比連續變化。因此,三效催化轉化器不能夠凈化排放氣體中的NOx。這是因為三效催化轉化器要利用排氣中的HC或CO進行NOx還原反應的緣故。在稀薄燃燒中,在排放氣體中殘留很多氧氣,不能進行NOx還原反應。為了使NOx吸儲型催化劑獲得高效功能,其溫度必須保持在250-500℃范圍內。當超過這一溫度范圍發動機會自動轉換到均質理論空燃比燃燒,並通過三效催化轉化器進行廢氣處理。然而這又與燃油經濟性下降相關,為此,必須增加廢氣冷卻裝置。利用這種冷卻裝置,排放氣體通過NOx吸儲型催化轉化而被冷卻,由於稀薄燃燒的范圍寬,催化轉化器的壽命也延長。然而,NOx吸儲型催化轉化器會受到硫侵蝕而中毒,所以必須把汽油中的含硫量盡量降低到最少。但是,如前所述,含硫低的汽油不是到處能供應的。大眾汽車公司採取的措施是,把催化劑反應溫度提高到650°以上,從而把附著在催化劑上的硫通過燃燒而加以消除。
在高速行駛時,能夠保持這樣高的催化劑溫度,但是,在城市內行駛時則催化劑溫度下降,就不能燒除附著在催化劑的硫。為此,通過NOx感測器監視硫附著在催化劑上的程度,根據監測情況提高排放氣體的溫度。作為其措施,一般採用點火正時延遲,盡管這樣做會引起燃油經濟性惡化,但是為了凈化處理NOx,這是不得已而為之。
Ⅶ 汽車分層燃燒是什麼
分層燃燒的好處在於熱效率高、節流損失少、有限的燃料盡可能多地轉化成工作能量。分層燃燒模式下節氣門不完全打開,保證進氣管內有一定真空度(可以控制廢氣再循環和碳罐等裝置)。這時,發動機的扭矩大小取決於噴油量,與進氣量和點火提前角關系不大。
分層燃燒模式在進氣過程中節氣門開度相對較大,減少了一部分節流損失。進氣過程中的關鍵是進氣歧管中安置一翻版,翻版向上開啟(原理性質,實際機型可能有所不同)封住下進氣歧管,讓進氣加速通過,與ω形活塞頂配合,相成進氣渦旋。
分層燃燒時噴油時間在上止點前60°至上止點前45°,噴射時刻對混合氣的形成有很大影響,燃油被噴射在活塞頂的凹坑內,噴出的燃油與渦旋進氣結合形成混合氣。混合氣形成發生在曲軸轉角40°至50°范圍內,如果小於這個范圍,混合氣無法點燃,若大於,就變成均質狀態了。分層燃燒的空燃比一般在1.6-3之間。
點火時,只有火花塞周圍混合狀態較好的氣體被點燃,這時周圍的新鮮空氣以及來自廢氣再循環的氣體形成了很好的隔熱保護,減少了缸臂散熱,提升了熱效率。點火時刻的控制也很重要,它只在壓縮過程終了的一個很窄的范圍內。
Ⅷ 奧迪的發動機分層燃燒是怎樣的原理
FSI是Fuel Stratified Injection的詞頭縮寫,意指燃油分層噴射。燃油分層噴射技術是發動機稀燃技術的一種。什麼叫稀燃?顧名思義就是發動機混合氣中的汽油含量低,汽油與空氣之比可達1:25以上。
FSI發動機利用一個高壓泵,使汽油通過一個分流軌道(共軌)到達電磁控制的高壓噴射氣門。它的特點是在進氣道中已經產生可變渦流,使進氣流形成最佳的渦流形態進入燃燒室內,以分層填充的方式推動,使混合氣體集中在位於燃燒室中央的火花塞周圍。如果稀燃技術的混合比達到25:1以上,按照常規是無法點燃的,因此必須採用由濃至稀的分層燃燒方式。通過缸內空氣的運動在火花塞周圍形成易於點火的濃混合氣,混合比達到12:1左右,外層逐漸稀薄。濃混合氣點燃後,燃燒迅速波及外層。
FSI特點是:能夠降低泵吸損失,在低負荷時確保低油耗,但需要增加特殊催化轉換器以有效凈化處理排放氣體。下面分別詳細闡述:
FSI發動機按照發動機負荷工況,基本上可以自動選擇2種運行模式。在低負荷時為分層稀薄燃燒,在高負荷時則為均質理論空燃比(14.6-14.7)燃燒。在這兩種運行模式中,燃料的噴射時間有所不同,真空作動的開關閥進行開啟/關閉。在高負荷中所進行的均質理論空燃比燃燒中,燃油則是在進氣沖程中噴射。理論空燃比的均質混合氣易於燃燒,不必藉助渦流作用,因此,由於進氣阻力減少,開關閥打開。而在全負荷以外,進行廢氣再循環,限制泵吸損失,由於直噴化而使壓縮比提高到12.1,即使在均質理論空燃燒比混合氣燃燒中,仍能降低燃油耗。進一步說,在FSI發動機中,在低負荷與高負荷之間,作為第三運行模式而設定均質稀薄燃燒,在這種運行模式中,燃油在進氣沖程噴射,並且由於產生加速稀薄混合氣燃燒的縱渦流,開關閥被關閉。這時,阻礙燃燒的廢氣再循環(EGR)暫不進行。與均質理論空燃比燃燒不同的是,吸入空氣量超過燃油的噴射量。
如上所述,根據FSI發動機運轉狀態,在分層稀薄燃燒到均質理論空燃比燃燒過程中,空燃比連續變化。因此,三效催化轉化器不能夠凈化排放氣體中的NOx。這是因為三效催化轉化器要利用排氣中的HC或CO進行NOx還原反應的緣故。在稀薄燃燒中,在排放氣體中殘留很多氧氣,不能進行NOx還原反應。為了使NOx吸儲型催化劑獲得高效功能,其溫度必須保持在250-500℃范圍內。當超過這一溫度范圍發動機會自動轉換到均質理論空燃比燃燒,並通過三效催化轉化器進行廢氣處理。然而這又與燃油經濟性下降相關,為此,必須增加廢氣冷卻裝置。利用這種冷卻裝置,排放氣體通過NOx吸儲型催化轉化而被冷卻,由於稀薄燃燒的范圍寬,催化轉化器的壽命也延長。然而,NOx吸儲型催化轉化器會受到硫侵蝕而中毒,所以必須把汽油中的含硫量盡量降低到最少。但是,如前所述,含硫低的汽油不是到處能供應的。大眾汽車公司採取的措施是,把催化劑反應溫度提高到650°以上,從而把附著在催化劑上的硫通過燃燒而加以消除。
在高速行駛時,能夠保持這樣高的催化劑溫度,但是,在城市內行駛時則催化劑溫度下降,就不能燒除附著在催化劑的硫。為此,通過NOx感測器監視硫附著在催化劑上的程度,根據監測情況提高排放氣體的溫度。作為其措施,一般採用點火正時延遲,盡管這樣做會引起燃油經濟性惡化,但是為了凈化處理NOx,這是不得已而為之
Ⅸ 為什麼分層燃燒不能在中高速下進行
原因如下:
分層燃燒既指在工業鍋爐中根據燃煤顆粒大小進行分層,實現充分燃燒;也可指在發動機中將燃油混合氣分成濃、稀兩部分進行充分燃燒。整個燃燒室內的混合氣的空燃比是不同的,火花塞附近的混合氣濃度要比其他地方的要高,這樣在火花塞周圍的混合氣他可以迅速燃燒,從而帶動較遠處較稀的混合氣體的燃燒,這種燃燒方式稱為「分層燃燒」。均質燃燒的目的是在高速行駛、加速時獲得大功率;分層燃燒是為了在低轉速、低負荷時節省燃油。
發動機分層燃燒技術詳解
什麼是汽車發動機分層燃燒技術?這里以「大眾FSI發動機」為例進行說明。
_
大眾FSI發動機利用一個高壓泵,使汽油通過一個分流軌道(共軌)到達電磁控制的高壓噴射氣門。它的特點是在進氣道中已經產生可變渦流,使進氣流形成最佳的渦流形態進入燃燒室內,以分層填充的方式推動,使混合氣體集中在位於燃燒室中央的火花塞周圍。如果稀燃技術的混合比達到25:1以上,按照常規是無法點燃的,因此必須採用由濃至稀的分層燃燒方式。通過缸內空氣的運動在火花塞周圍形成易於點火的濃混合氣,混合比達到12:1左右,外層逐漸稀薄。濃混合氣點燃後,燃燒迅速波及外層。