A. 關於多位數相乘的簡便方法
選B是因為6x9=54中個位是4,而11338x25593結果的個位也是4 (兩個因數個位相乘=24)
B. 十位乘十位,十位乘百位,百位乘百位的算術題有什麼簡便方法嗎
拆開,拆成幾乘,幾十乘,幾百乘,再相加.
例如:123 × 456 = 100 × 456 + 20 ×456 + 3×456
如果感覺還不夠簡便,可以把456也進行拆分
雖然簡便了,但是卻也變復雜啦,二者不可兼得!
C. 兩個十位數相同相乘有什麼簡單計算方法
一、兩位數乘兩位數。
1.十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2.頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3.第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4.幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。
6.十幾乘任意數:
口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
註:和滿十要進一。
數學中關於兩位數乘法的「首同末和十」和「末同首和十」速演算法。所謂「首同末和十」,就是指兩個數字相乘,十位數相同,個位數相加之和為10,舉個例子,67×63,十位數都是6,個位7+3之和剛好等於10,我告訴他,象這樣的數字相乘,其實是有規律的。就是兩數的個位數之積為得數的後兩位數,不足10的,十位數上補0;兩數相同的十位取其中一個加1後相乘,結果就是得數的千位和百位。具體到上面的例子67×63,7×3=21,這21就是得數的後兩位;6×(6+1)=6×7=42,這42就是得數的前兩位,綜合起來,67×63=4221。類似,15×15=225,89×81=7209,64×66=4224,92×98=9016。我給他講了這個速算小「秘訣」後,小傢伙已經有些興奮了。在「糾纏」著讓我給他出完所有能出的題目並全部計算正確後,他又嚷嚷讓我教他「末同首和十」的速算方法。我告訴他,所謂「末同首和十」,就是相乘的兩個數字,個位數完全相同,十位數相加之和剛好為10,舉例來說,45×65,兩數個位都是5,十位數4+6的結果剛好等於10。它的計演算法則是,兩數相同的各位數之積為得數的後兩位數,不足10的,在十位上補0;兩數十位數相乘後加上相同的個位數,結果就是得數的百位和千位數。具體到上面的例子,45×65,5×5=25,這25就是得數的後兩位數,4×6+5=29,這29就是得數的前面部分,因此,45×65=2925。類似,11×91=1001,83×23=1909,74×34=2516,97×17=1649。
為了易於大家理解兩位數乘法的普遍規律,這里將通過具體的例子說明。通過對比大量的兩位數相乘結果,我把兩位數相乘的結果分成三個部分,個位,十位,十位以上即百位和千位。(兩位數相乘最大不會超過10000,所以,最大隻能到千位)現舉例:42×56=2352
其中,得數的個位數確定方法是,取兩數個位乘積的尾數為得數的個位數。具體到上面例子,2×6=12,其中,2為得數的尾數,1為個位進位數;
得數的十位數確定方法是,取兩數的個位與十位分別交叉相乘的和加上個位進位數總和的尾數,為得數的十位數。具體到上面例子,2×5+4×6+1=35,其中,5為得數的十位數,3為十位進位數;
得數的其餘部分確定方法是,取兩數的十位數的乘積與十位進位數的和,就是得數的百位或千位數。具體到上面例子,4×5+3=23。則2和3分別是得數的千位數和百位數。
因此,42×56=2352。再舉一例,82×97,按照上面的計算方法,首先確定得數的個位數,2×7=14,則得數的個位應為4;再確定得數的十位數,2×9+8×7+1=75,則得數的十位數為5;最後計算出得數的其餘部分,8×9+7=79,所以,82×97=7954。同樣,用這種演算法,很容易得出所有兩位數乘法的積。
D. 十位數乘法豎式計算每個數的意思,寫清楚一定要有圖!
1.步驟類:①整體簡介②所需工具/原料③方法/步驟④注意事項
2.常識類:①直接回答問題②詳細給出具體原因/理由/介紹
3.原因類:①詳細解釋原因/理由②提供有效解決方案(構成見步驟類)
4.其他類型詳見高質量標准(點擊回答框右側圖片)
E. 十位數相同的兩位數相乘,積有什麼規律
1)十位數相同,個位數是5的兩位數的自相乘法,即平方:
15X15=225,25X25=625,35X35=1225,45X45=2025,55X55=3025,65X65=4225,75X75=5625,85X85=7225,95X95=9025
即A5XA5=PQ25,結果中的前兩位數PQ=AXA+A=AX(A+1),後兩位數都是5X5=25。
2)十位數相同,個位數相加等於10的兩位數乘法。
11X19=209,12X18=216,13X17=221,14X16=224,15X15=225; 21X29=609,22X28=616,23X27=621,24X26=624,25X25=625;
31X39=1209,32X38=1216,33X37=1221,34X36=1224,35X35=1225; 41X49=2009,42X48=2016,43X47=2021,44X46=2024,45X45=2025;
51X59=3009,52X58=3016,53X57=3021,54X56=3024,55X55=3025; 61X69=4209,62X68=4216,63X67=4221,64X66=4224,65X65=4225;
71X79=5609,72X78=5616,73X77=5621,74X76=5624,75X75=5625; 81X89=7209,82X88=7216,83X87=7221,84X86=7224,85X85=7225;
91X89=9009,92X98=9016,93X97=9021,94X96=9024,95X95=9025。
即當B+C=10時,ABXAC=PQRS,結果中的前兩位數PQ=AXA+A=AX(A+1),後兩位數RS=BXC,注意如果計算後兩位數只得到一位數時,則需在其前面補上一個0湊成兩位數,如81X89=7209。
上面的規律可統一寫成:兩位數乘法中,如果其中一位數相同,另一位數相加等於10;或者其中一個數的個位十位數相同,另一個數的個位與十位相加等於10,即:ABXAC或BAXCA或AAXBC,其中B+C=10,
則所得的結果後兩位與前兩位的規律如下:
個位數相乘,即可得到結果中的後兩位數;
十位數相乘再加上兩個數中相同的數,則得到前兩位數。
ABXAC=(AXA+A)|(BXC)
BAXCA=(BXC+A)|(AXA)
AAXBC=(AXB+A)|(AXC)
F. 十位數乘法速算技巧是什麼
1、十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1 2+4=6 2×4=8 12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2、頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3 2×3=6 3×7=21 23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3、第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4 4×4=16 7×4=28 37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
乘法運演算法則:
1、單項式多項式
單項式與多項式相乘,就是根據分配律,用單項式去乘多項式的每一項,再把所得的積相加。
注意:單項式乘以多項式,結果還是一個多項式,而且項數恰好與相乘以前那個多項式的項數相同。
2、多項式法則
多項式的乘法法則:(a+b)(m+n)=am+an+bm+bn(a、b、m、n都是單項式)
(a+b)²=a²+b²+2ab
(a-b)²=a²+b²-2ab
G. 兩位數相乘的快速秘訣
前提兩個兩位數,是十位數相同,個位數相加等於10.
如12X18,34X36 65X65
遇到這種情況,可以一口說出答案的.方法是:
十位數X(十位數+1)=AB
兩個個位數直接相乘=CD
那麼結果就是ABCD
舉例說明:
73X77=5621
7X8=56
3X7=21
85X85=7225
8X9=72
5X5=25
12X18=216
1X2=2
2X8=16
H. 十位相同、個位相加滿十的兩個兩位數相乘的速算方法
這種演算法叫同頭尾合十。
先將兩個個位數相乘,再將兩個十位數相乘,但十位數相乘時兩個相同的數要把其中一個數加一,之後再乘。
如:25*25=
先5*5=25
再2*3=6
等於625
I. 兩個十位數相同,個位數不同的數相乘的簡便計算是如何直接得出結果相反又是如何算
十位數相同,個位數不同的數相乘的簡便計算是:
十位數的平方*100+十位數*(兩個不同的個位數相加)*10+兩個個位數相乘
比如
78*73=7^2*100+7*(8+3)*10+8*3=4900+770+24=5694
個位數相同,十位數不同的數相乘的簡便計算是:
兩個十位數相乘*100+個位數*(兩個不同的十位數相加)*10+個位數的平方
比如87*37=8*3*100+7*(8+3)*10+7^2=2400+770+49=3219
J. 任意十位數與十位數相乘
答:
兩位數乘兩位數,只要十位數相同,個位數相加等於10的。都能用這種演算法。只需用十位數乘以比它大一的數,加上後兩位數相乘即可。如果後兩位數相乘只有一位時,前面要補0。如31*39=?先用3乘以比它大一的數4,為12,加上後兩位數相乘1*9=9,只有一位,前面補0,為09,所以31*39=1209。它的原理是:假若這兩個兩位數分別為ab=10a+b,ac=10a+c,且b+c=10。
則ab*ac=(10a+b)*(10a+c)=100a^2+10a(b+c)+bc=100a^2+100a+bc
=a(a+1)*100+bc,可以看到,只需用十位數a乘以比它大一的數a+1,然後補上兩個位數的乘積bc,即可。
這裡面又有一個特例,凡個位數為5的數的平方的速算。如35的平方,就是3*4=12,後面直接補上25,即得35^2=1225。現在您自己也可試下:95^2=9025。還可推廣到小數,如6.5^2=?先算6*7=42,後面直接補上.25即可。所以6.5^2=42.25。