導航:首頁 > 知識科普 > 26x10252簡便計算方法

26x10252簡便計算方法

發布時間:2024-09-14 20:18:14

Ⅰ 二項式的解法,有沒有簡便的方法可以求出來

Page 2 of 5 \
令 272 3 r, 6r, 所以2 x的系數為14)2(6 7767C. 2.展開式中的某一項 此類問題的常規解法是直接利用通項公式求解. 例5
73 )12(x x 的展開式中常數項為 ( ) A、14 B、14 C、42 D、42 解: 設展開式中第1r項為常數項,則
rr rrx xCT)1() 2(737 1 
=2 )7(37 72 )1(rrrr rx C . 令(
36,02 )7 rr r則, 142)1(6 76C所求常數項為,故選(A). 例6年全國卷2005(Ⅰ
)8 )1(x x 的展開式中常數項為________.(用數字作答) 解:設展開式中第1r項為常數項,則
rrrrx xCT)1(881=r rrxC288)1(. 令4,028rr則, 70)1(484C所求常數項為. 例7 已知
(x x12  )n
的展開式中第三項與第五項的系數之比為 14 3 ,則展開式中常數項是 ( ) (A)-1 (B)1 (C)-45 (D)45 解
: 2 521)1()1(nrr nnrnrnr rnn rx Cx xC T,
因為展開式中第三項與第五項的系數之比為 14 3,
143 )1()1(4 42 2nn nnnnCC, 化簡得:05052 nn,10n.

Page 3 of 5 \
令 02 10 5r,則2r
, 45) 1(2 10252 1010 2 10x C 所求常數項為. 例8 (2x
- 1x )6 展開式中常數項為________. (用數字作答) 解: 設展開式中第1r項為常數項,則
rr rrx xCT)1() 2(66 1
 =rrr r x C2 366 62 )1(
. 令02 3 6 r,則4r. 602)1(4 6464C所求常數項為. 3.求展開式中冪指數為整數的項數 此類問題的常規解法是將展開式的通項整理,令其冪指數為整數,從而求出項數. 例
9
123)(xx的展開式中,含x的正整數冪的項數共有________. 解: 設展開式中第1r項的冪為正整數,

rrr rxxCT)()(31212
1=3 21212 r rr
xC=6 612r r x C. 依題意,1206rr的倍數,且 是,個值共有3r
.
即123)(xx的展開式中,含x的正整數冪的項數共有3個.
例10
243 )1 (x x 的展開式中,x的冪指數是整數有 ( ) A.3項 B.4項 C.5項 D.6項 解: 設展開式中第1r項的冪指數為整數,

r rrrxxCT)() (
3 2424 1=3 22424 r rr
x C=6 51224 rr x C . 依題意,2406rr的倍數,且 是,個值共有5r
.
即243 )1 (x x 的展開式中,x的冪指數是整數有5個,故選C. 4.求展開式中某些項的系數和 此類問題的常規解法是賦值法. 例11 若)() 21(2004200422102004 Rxxaxaxaax,則 )(10aa)(20aa+)()(2004030aaaa=_________.(用數字作答) 解:令1,00ax得

閱讀全文

與26x10252簡便計算方法相關的資料

熱點內容
怎麼玩游戲最簡單方法 瀏覽:387
暴擊很簡單的隱藏方法 瀏覽:356
列式計算方法和技巧二年級 瀏覽:537
體密檢測方法英文 瀏覽:339
狗狗感冒用什麼方法最好 瀏覽:440
碩士學位論文研究方法 瀏覽:840
臭蟲卵怎麼消滅最簡單方法 瀏覽:95
如何做到早起不賴床最有效的方法 瀏覽:452
藤三七種植方法 瀏覽:981
伺服器系統防火牆設置在哪裡設置方法 瀏覽:61
稀酸的檢測方法 瀏覽:209
ug清跟刀路斷解決方法 瀏覽:134
蘋果高清通話在哪裡設置方法 瀏覽:725
交易和技術分析方法 瀏覽:843
凱恩斯的分析方法 瀏覽:147
檸檬粉的食用方法 瀏覽:423
我國常用的hiv抗體檢測方法不包括 瀏覽:684
辟穀修復最簡單的方法 瀏覽:852
錯誤1053解決方法 瀏覽:744
陽痿早泄鍛煉方法圖解 瀏覽:277