1. 672-36+64鐢ㄧ畝渚挎柟娉曟庝箞綆楋紵
672-36+64鐢ㄧ畝渚挎柟娉曡$畻錛
672-36+64
=(672+64)-36
=736-36
=700
鎵╁睍璧勬枡
綆綆楁柟娉曪細
瑁傞」娉
鍒嗘暟瑁傞」鏄鎸囧皢鍒嗘暟綆楀紡涓鐨勯」榪涜屾媶鍒嗭紝浣挎媶鍒嗗悗鐨勯」鍙鍓嶅悗鎶墊秷錛岃繖縐嶆媶欏硅$畻縐頒負瑁傞」娉曘
甯歌佺殑瑁傞」鏂規硶鏄灝嗘暟瀛楀垎鎷嗘垚涓や釜鎴栧氫釜鏁板瓧鍗曚綅鐨勫拰鎴栧樊銆傞亣鍒拌傞」鐨勮$畻棰樻椂錛岃佷粩緇嗙殑瑙傚療姣忛」鐨勫垎瀛愬拰鍒嗘瘝錛屾壘鍑烘瘡欏瑰垎瀛愬垎姣嶄箣闂村叿鏈夌殑鐩稿悓鐨勫叧緋伙紝鎵懼嚭鍏辨湁閮ㄥ垎錛岃傞」鐨勯樼洰鏃犻渶澶嶆潅鐨勮$畻錛屼竴鑸閮芥槸涓闂撮儴鍒嗘秷鍘葷殑榪囩▼錛岃繖鏍風殑璇濓紝鎵懼埌鐩擱偦涓ら」鐨勭浉浼奸儴鍒嗭紝璁╁畠浠娑堝幓鎵嶆槸鏈鏍規湰鐨勩
錛1錛夊垎瀛愬叏閮ㄧ浉鍚岋紝鏈綆鍗曞艦寮忎負閮芥槸1鐨勶紝澶嶆潅褰㈠紡鍙涓洪兘鏄痻(x涓轟換鎰鑷鐒舵暟)鐨勶紝浣嗘槸鍙瑕佸皢x鎻愬彇鍑烘潵鍗沖彲杞鍖栦負鍒嗗瓙閮芥槸1鐨勮繍綆椼
錛2錛夊垎姣嶄笂鍧囦負鍑犱釜鑷鐒舵暟鐨勪箻縐褰㈠紡錛屽苟涓旀弧瓚崇浉閭2涓鍒嗘瘝涓婄殑鍥犳暟鈥滈栧熬鐩告帴鈥
錛3錛夊垎姣嶄笂鍑犱釜鍥犳暟闂寸殑宸鏄涓涓瀹氬箋
2. 簡便計算大全
一、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。適用於加法交換律和乘法交換律。
例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81
二、結合律
(一)加括弧法
1.當一個計算題只有加減運算又沒有括弧時,我們可以在加號後面直接添括弧,括到括弧里的運算原來是加還是加,是減還是減。但是在減號後面添括弧時,括到括弧里的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。)
例:345-67-33=345-(67+33)=345-100=245 789-133+33=789-(133-33)=789-100=689
2.當一個計算題只有乘除運算又沒有括弧時,我們可以在乘號後面直接添括弧,括到括弧里的運算,原來是乘還是乘,是除還是除。但是在除號後面添括弧時,括到括弧里的運算,原來是乘,現在就要變為除;原來是除,現在就要變為乘。(即在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10 1200÷48×4=1200÷(48÷4)=1200÷12=100
(二)去括弧法
1.當一個計算題只有加減運算又有括弧時,我們可以將加號後面的括弧直接去掉,原來是加現在還是加,是減還是減。但是將減號後面的括弧去掉時,原來括弧里的加,現在要變為減;原來是減,現在就要變為加。(現在沒有括弧了,可以帶符號搬家了哈) (註:去括弧是添加括弧的逆運算)
2.當一個計算題只有乘除運算又有括弧時,我們可以將乘號後面的括弧直接去掉,原來是乘還是乘,是除還是除。但是將除號後面的括弧去掉時,原來括弧里的乘,現在就 要變為除;原來是除,現在就要變為乘。(現在沒有括弧了,可以帶符號搬家了哈) (註:去掉括弧是添加括弧的逆運算)
三、乘法分配律
1.分配法 括弧里是加或減運算,與另一個數相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
2.提取公因式 注意相同因數的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 這里35是相同因數。
3.注意構造,讓算式滿足乘法分配律的條件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借來還去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和25,4和25,8和125等。分拆還要注意不要改變數的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000 125×88=125×(8×11)=125×8 ×11=1000×8=8000 36×25=9×4×25=9×(4×25)=9×100=900 綜上所述,要教好簡便計算,使學生達到計算的時候又快又對,不僅正確無誤,方法還很合理、樣式靈活的要求。首先要求教師熟知有關內容並綽綽有餘,其次對教材還要像導演使用劇本一樣,都有一個創造的過程,做探求教法的有心人。在練習設計上除了做到內容要精選,有層次,題形多樣,還要有訓練智力與非智力技能的價值。
3. 67*99用簡便方法計算 個
67*99用簡便方法計算:
67*99
=67*(100-1)
=6700-67
=6633
(3)6677用簡便方法計算擴展閱讀
簡便計算方法:
兩數相乘直接適用的只有乘法交換律,並不能使計算簡便,所以需要通過拆項變成同級運算或兩級運算。
1、有一個數接近整百(整十、整千類似)
將接近整百的數拆成「整百+幾」或「整百-幾」。
例87×99
=87×(100-1)
=87×100-87×1
=8700-87
=8613
2、有一個數是25或125
遇25拆4,遇125拆8
例25×28
=25×(4×7)
=25×4×7
=100×7
=700
也可以拆成兩級運算
125×72
=125×(80-8)
=125×80-125×8
=10000-1000
=9000
4. 綆渚胯$畻鎬庝箞綆
綆渚胯$畻鏂規硶濡備笅錛
1銆佸姞鎷鍙鋒硶錛氭嫭鍙峰墠鏄鍔犲彿錛屽幓鎺夋嫭鍙蜂笉鍙樺彿錛屾嫭鍙峰墠鏄鍑忓彿錛屽幓鎺夋嫭鍙瘋佸彉鍙楓
2銆佷箻娉曞垎閰嶅緥娉曪細鎷鍙峰墠鏄涔樺彿錛屽幓鎺夋嫭鍙蜂笉鍙樺彿錛屾嫭鍙峰墠鏄闄ゅ彿錛屽幓鎺夋嫭鍙瘋佸彉鍙楓
3銆佷箻娉曠粨鍚堝緥娉曪細鍏堢畻鎷鍙峰栫殑涔樻硶錛屽啀綆楁嫭鍙峰唴鐨勫姞鍑忔硶銆
5銆佸炲己鐞嗚В鑳藉姏錛氱畝渚胯$畻鏂規硶鍙浠ュ府鍔╂垜浠鏇村ソ鍦扮悊瑙f暟瀛︽傚康鍜屽師鐞嗭紝浠庤屾洿濂藉湴鎺屾彙鏁板︾煡璇嗐
6銆佹彁楂樻暟瀛﹀簲鐢ㄨ兘鍔涳細閫氳繃綆渚胯$畻錛屾垜浠鍙浠ユ洿濂藉湴搴旂敤鏁板︾煡璇嗚В鍐沖疄闄呴棶棰橈紝浠庤屽炲己鏁板﹀簲鐢ㄨ兘鍔涖
7銆佸炲己閫昏緫鎬濈淮鑳藉姏錛氱畝渚胯$畻寰寰闇瑕侀昏緫鎺ㄧ悊鍜屾濈淮鐏墊椿鎬х殑榪愮敤錛屼粠鑰屽炲己閫昏緫鎬濈淮鑳藉姏銆
8銆佹縺鍙戝︿範鍏磋叮錛氱畝渚胯$畻鏂規硶鍙浠ヨ╂垜浠鎰熷彈鍒版暟瀛︾殑欖呭姏鍜岃叮鍛蟲э紝浠庤屾縺鍙戝︿範鍏磋叮鍜屽姩鍔涖
5. 六年級簡便計算題60道
一定要把括弧外的數分別乘括弧里的兩個數,再把積相加或相減。
(8+40)×25 125×(8+80) 48×(5+100) 24×(2+10) 75×(1000—2) 15×(40— 8)
例如:
(1)2.64×51.9+264×0.481
=264×0.519+264×0.481
=264×(0.519+0.481)
=264×1
=264
(2)9.16×1.53-0.053×91.6
=9.16×1.53-0.53×9.16
=9.16×(1.53-0.53)
=9.16×1
=9.16
小學數學簡便方法歸納
1、提取公因式:這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
2、借來借去法:看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。
3、拆分法:拆分法就是為了方便計算把一個數拆成幾個數。
6. 簡便運算的16種運算方法是什麼
一、運用乘法分配律簡便計算
乘法分配律指的是:
例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
(6)6677用簡便方法計算擴展閱讀:
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。
乘法結合律
乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
7. 簡便運算的技巧
簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。
主要用三種方法:加減湊整、分組湊整、提公因數法。
他們使用的都是數學計算中的拆分湊整思想。
主要步驟:
①遇見復雜的計算式時,先觀察有沒有可能湊整;
②運用四則運算湊成整十整百之後再進行簡便計算。
2/4
加減湊整法
1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百【例1】;
2、補上一個數,能夠與其他數湊整,最後再減去這個數
分組湊整法
在只有加減法的計算題中,將算式中的各項重新分下組湊整,主要採用兩個公式:G老師講奧數(微)。【例3】
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
減法的性質:a-b-c=a-(b+c)。
提公因數法
使用乘法分配律提取公因數,a x (b±c)=a x b±a x c;
如果沒有公因數,可以根據乘法結合律變化出公因數,詳見【例4】。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
做簡算,是享受。細觀察,找特點。
連續加,結對子。連續乘,找朋友。
連續減,減去和。連續除,除以積。
減去和,可連減。除以積,可連除。
乘和差,分別乘。積加減,莫慌張,
同因數,提出來,異因數,括弧放。
同級算,可交換。特殊數,巧拆分。
合理算,我能行。
1方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
例如:
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
例如:
2方法二:結合律法
(一)加括弧法
1.在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
2.在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
(二)去括弧法
1.在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加。)。
2.在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)。
3方法三:乘法分配律法
1.分配法
括弧里是加或減運算,與另一個數相乘,注意分配
例:8×(12.5+125)
=8×12.5+8×125
=100+1000
=1100
2.提取公因式
注意相同因數的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意構造,讓算式滿足乘法分配律的條件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
4方法四:湊整法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
5方法五:拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。
例:32×125×25
=(4×8)×125×25
=(4×25)×(8×125)
=100×1000
=100000
6方法六:巧變除為乘
除以一個數等於乘以這個數的倒數
7方法六:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
遇到裂項的計算題時,需注意:
1.連續性
2.等差性
計算方法:頭減尾,除公差。
8方法六:找朋友法
例題:
例1:
283+52+117+148
=(283+117)+(52+48)
(運用加法交換律和結合律)。
減號或除號後面加上或去掉括弧,後面數值的運算符號要改變。
例2:
657-263-257
=657-257-263
=400-263
(運用減法性質,相當加法交換律。「帶符號搬家」)
例3:
195-(95+24)
=195-95-24
=100-24
(運用減法性質)
例4:
150-(100-42)
=150-100+42
(去括弧時,括弧前面是減號,括弧裡面的運算符號要變成逆運算)
例5:
(0.75+125)x8
=0.75x8+125x8=6+1000
. (運用乘法分配律))
例6:
( 125-0.25)x8
=125x8-0.25x8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 運用除法性質)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相當乘法分配律)
例9:
375÷(125÷0.5)
=375÷125x0.5=3x0.5=1.5.
(運用除法性質)
例10:
4.2÷(0.6x0.35)
=4.2÷0.6÷0.35
=7÷0.35=20
(運用除法性質)
例11:
12x125x0.25x8
=(125x8)x(12x0.25)
=1000x3=3000.
(運用乘法交換律和結合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(運用加法性質和結合律)