導航:首頁 > 知識科普 > 在數的運算中學過那些簡便方法

在數的運算中學過那些簡便方法

發布時間:2024-05-17 00:42:19

① 簡便計算大全

一、交換律(帶符號搬家法)

當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。適用於加法交換律和乘法交換律。

例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81

二、結合律

(一)加括弧法

1.當一個計算題只有加減運算又沒有括弧時,我們可以在加號後面直接添括弧,括到括弧里的運算原來是加還是加,是減還是減。但是在減號後面添括弧時,括到括弧里的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。)

例:345-67-33=345-(67+33)=345-100=245 789-133+33=789-(133-33)=789-100=689

2.當一個計算題只有乘除運算又沒有括弧時,我們可以在乘號後面直接添括弧,括到括弧里的運算,原來是乘還是乘,是除還是除。但是在除號後面添括弧時,括到括弧里的運算,原來是乘,現在就要變為除;原來是除,現在就要變為乘。(即在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。)

例:510÷17 ÷3=51÷(17×3)=510÷51=10 1200÷48×4=1200÷(48÷4)=1200÷12=100

(二)去括弧法

1.當一個計算題只有加減運算又有括弧時,我們可以將加號後面的括弧直接去掉,原來是加現在還是加,是減還是減。但是將減號後面的括弧去掉時,原來括弧里的加,現在要變為減;原來是減,現在就要變為加。(現在沒有括弧了,可以帶符號搬家了哈) (註:去括弧是添加括弧的逆運算)

2.當一個計算題只有乘除運算又有括弧時,我們可以將乘號後面的括弧直接去掉,原來是乘還是乘,是除還是除。但是將除號後面的括弧去掉時,原來括弧里的乘,現在就 要變為除;原來是除,現在就要變為乘。(現在沒有括弧了,可以帶符號搬家了哈) (註:去掉括弧是添加括弧的逆運算)

三、乘法分配律

1.分配法 括弧里是加或減運算,與另一個數相乘,注意分配。

例:45×(10+2)=45×10+45×2=450+90=540

2.提取公因式 注意相同因數的提取。

例:35×78+22×35=35×(78+22)=35×100=3500 這里35是相同因數。

3.注意構造,讓算式滿足乘法分配律的條件。

例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500

四、借來還去法

看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。

例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106

五、拆分法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和25,4和25,8和125等。分拆還要注意不要改變數的大小。

例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000 125×88=125×(8×11)=125×8 ×11=1000×8=8000 36×25=9×4×25=9×(4×25)=9×100=900 綜上所述,要教好簡便計算,使學生達到計算的時候又快又對,不僅正確無誤,方法還很合理、樣式靈活的要求。首先要求教師熟知有關內容並綽綽有餘,其次對教材還要像導演使用劇本一樣,都有一個創造的過程,做探求教法的有心人。在練習設計上除了做到內容要精選,有層次,題形多樣,還要有訓練智力與非智力技能的價值。

② 簡便計算方法

常用的簡便演算法有以下幾種
一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。
例1
計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
例2
計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
例3
計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
例4
計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
例5
計算:16×25×25
因為4×25=100,而16=4×4,由此可將兩個4分別與兩個25相乘,即原式可轉化為:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
在本道題目中,利用第一種方法即可,也就是51乘以59加41的和再加上22乘以68加上32的和,等於5100加上2200等於6300

③ 8條簡便運算的定律

1、加法交換律:

三個數相加,交換兩個加數的位置,和不變。

公式:a+b+c= a+c+b

例題:

672+28+169

=672+28+169

=700+169

=869

此方法在簡便運算過程中,關鍵在於交換後的兩個數能湊整。擾做

2、加法結合律仿伍:

三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

(a+b)+c = a+(b+c)

例題:

738+68+132

=738+(緩大衡68+132)

=738+200

=938

此方法適用於兩個數結合相加後能湊成整數。

3、乘法交換律:兩個數相乘,交換兩個因數的位置,積不變。

公式:a×b = b×a

例題:

12.5×2.5×0.8×4

=12.5×0.8×2.5×4

=10×10

=100

4、乘法結合律:三個數相乘,先乘前兩個數,或者先乘後兩個數,積不變。

公式:(a×b)×c = a×(b×c)

例題:

0.125×6.5×8

=0.125×8×6.5

=1×6.5

=6.5

5、乘法分配律:

兩個數的和與一個數相乘,先把它們分別與這個數相乘,再相加。

公式:(a+b)×c = a×c+b×c

變形公式:(a-b)×c = a×c-b×c

例題:

(40+8)×25

=40×25+8×25

=1000+200

=1200
6、減法的性質

註:這些都是由加法交換律和結合律衍生出來的。

減法性質①:如果一個數連續減去兩個數,那麼後面兩個減數的位置可以互換。

字母表示:

abc=acb

例:

198-75-98

=198-98-75

=100-75

=25
7、除法的性質。

兩個數的和或者差除以同一個數,等於這兩個數分別去除以這個數,再相加。

公式:(a+b)÷c=a÷c+b÷c

例題:

(100+75)÷25

=100÷25+75÷25

=4+3

=7
8、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

④ 常用的簡便運算方法

1、十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:
1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2、頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3、第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4、幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5、11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。
6、十幾乘任意數:
口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
註:和滿十要進一。

⑤ 簡便的運算有哪些

簡便運算方法有:

①符號搬家法。

②結合律法。

③乘法分配法。

④借來還去法。

⑤拆分法

①符號搬家法:富豪班假發主要是根據加法交換律以及乘法交換律來進行的,在小學四年級的時候,我們也學習了相關的運算方式,當一個計算題只有一個同一級運算的時候,簡單來說的話只有乘除法或者只有加減運算的時候,而且還要滿足沒有括弧的時候,我們就可以使用帶符號搬家的方法了。

②結合律法:結合律法有兩種形式,一個是加括弧法一個是去括弧法,加括弧法是當計算題中只有加減運算並且還沒有括弧的時候,我們可以直接添加括弧,而括弧內的內容和運算加法依然不變,但是在減號後面的時候要是直接添加括弧的話則是需要將運算方法改變,原有是加法的時候應該改變為減法。

而原有減法則是需要改編成加法,簡單來描述的話則是在加減運算中括弧前面是加號的時候不變號,括弧前面是減號的時候需要變號。



去括弧法主要當一個計算題只有加減運算,但是有括弧的時候,我們可以將加號後面的括弧是直接去掉的,原來是加還是加,原來是減還是減,當有括弧的時候且括弧前面是減號的時候則是需要改變內部的運算,原來是加現在變減,原來是減現在變加。

③乘法分配法:乘法分配法主要有兩種一種就是分配法另外一種就是提取公因式法,分配法主要是括弧里是加或者是減的運算的時候,和另外一個數相乘的話需要注意分配,而提取公因式的時候則是需要提取一個相同的公因式。

④借來還去法:顧名思義,在使用的時候,一定要注意其中的規律,並且要做到有借有還,這樣才不會將題做錯。

⑤拆分法:顧名思義,拆分法就是將一個數拆分成為幾個數,對於這些數之間,一定要注意的是拆分的時候不能改變數的大小。

⑥ 簡便運算的16種運算方法是什麼

一、運用乘法分配律簡便計算

乘法分配律指的是:

例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

(6)在數的運算中學過那些簡便方法擴展閱讀:

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。

乘法結合律

乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。

⑦ 數學簡便計算,有哪幾種方法

一、整體簡便計算。整個一道算式可以用簡便方法計算,這種形式最為常見。例如:
=1.14×10
=11.4
二、局部簡便計算。一道算式中局部可以進行簡便計算,這種形式也不少見。
三、中途簡便計算。開始計算並不能簡便計算,而經過一兩步後卻能進行簡便計算,這種情況最容易忽視。例如:
=1.2×(1+5+4)
=1.2×10
=12
四、重復簡便計算。在一道題里不止一次地進行簡便計算,這種情況往往不注意後一次簡便計算。例如:
=8×55×0.125
=8×0.125×55 第二次
=1×55
=55

一簡算的根據 a、乘法運算定律 b、加法運算定律 c、減法、除法的運算性質
二簡算的類型 a、直接簡算 b、部分簡算 c、轉化簡算 d、過程簡算
三簡算的幾種公式:
加法:a+b+c=a+(b+c)(加法結合律)
乘法:a×b×c=a×c×b(乘法交換律) a×b×c=a×(b×c)(乘法結合律) (a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
減法:a-b-c=a-c-b(減法交換律) a-b-c=a-(b+c)(減法結合律)
除法:a÷b÷c=a÷c÷b(除法交換律) a÷b÷c=a÷(b×c)(除法結合律) (a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除數是兩個數的差或和的情況下才能進行分配

希望幫到你 望採納 謝謝 加油

閱讀全文

與在數的運算中學過那些簡便方法相關的資料

熱點內容
茶幾安裝方法 瀏覽:815
億通手機截屏方法 瀏覽:148
東原燃氣壁掛爐使用方法 瀏覽:921
教師常用的指導方法有哪些 瀏覽:268
產品成本計算方法概述教學設計 瀏覽:635
lamer神奇面霜使用方法 瀏覽:380
微軟平板電腦救磚方法 瀏覽:908
人力分析有哪些方法 瀏覽:751
hb101活力素使用方法 瀏覽:647
水利基金計算方法 瀏覽:213
最簡單的原點贊美方法 瀏覽:177
你有幾種解決數學故事問題的方法 瀏覽:37
地磚可以用什麼方法固定 瀏覽:696
葡萄蟲最佳防治方法 瀏覽:138
方管簡單的拼接方法 瀏覽:726
國足訓練方法視頻大全 瀏覽:296
華為手機快捷開關在哪裡設置方法 瀏覽:58
低分化癌是怎麼治療方法 瀏覽:480
姬存希眼霜使用方法 瀏覽:320
鐵鍋的安裝方法視頻 瀏覽:930