多重比較法是指多個等方差正態總體均值的比較方法。經過方差分析法可以說明各總體均值間的差異是否顯著,即只能說明均值不全相等,但不能具體說明哪幾個均值之間有顯著差異。
多重比較法包括:
1、圖基法
這種方法的基礎是學生化的極差分布( studentized range distribution)。令r為從均值為μ、方差為σ2的正態分布中得到的一些獨立觀察的極差(即最大值減最小值),令v為誤差的自由度數目(多重比較中為N-G)。
2、謝弗法
謝弗法( Scheffé's method) 又稱S多重比較法,也為多重比較構建一個100(1 -α) %的聯立置信區間( Scheffé,1953,1959)。
(1)生物統計學有哪些檢驗方法擴展閱讀:
圖基法和謝弗法的比較
1、謝弗法可應用於樣本量不等時的多重比較,而原始的圖基法只適用於樣本量相同時的比較。
2、在比較簡單成對差異( simple pairwise differences)時,圖基法最具效力,給出更窄的置信區間,雖然它對於廣義比對( general contrasts) 也可適用。
3、與此相比,對於涉及廣義比對的比較,謝弗法更具效力,給出更窄的置信區間。
4、如果F檢驗顯著,那麼謝弗法將從所有可能的比對(contrasts)中至少檢測出一對比對是統計顯著的。
5、謝弗法應用起來更為方便,因為F分布表比圖基法中使用的學生化極差分布更容易得到。
6、正態性假定和同方差性假定對於圖基法比對於謝弗法更加重要。
參考資料來源:網路-多重比較法