Ⅰ 乘法和除法的簡便運算
特殊數字的簡便運算
1、特殊數字的簡便運算是指含有5,2或它們倍數的乘法運算,例如2x4x5x25這樣的乘法運算,可以寫成2x5x4x25=10x100=1000.
2、有些數字雖然不是2和5之類的數,但是可以寫成因數相乘的形式,便於乘法運算。例如624x125=2x2x2x2x39x5x5x5=2x5x2x5x2x5x2x39=78000
3、需要記住2x5=10,4x25=100,8x125=1000這些常見的快速運算的式子。
首數相同尾數互補的乘法
1、尾數互補是指兩個數的十位相同,尾數相加等於10,例如72x78就屬於這一類。這種運算是初中所用到的十字相乘法有關,在小學范圍只要知道方法,直接使用就可以。
2、它的運算方法是十位相乘,作為乘積的前兩位。尾數相乘作為乘積的後兩位,一定要注意特例,如果兩個數中一個尾數是1,另一個尾數是9,這個時候十位要補個0例如61x69,答案不是369,乃是3609。
3、如果是三位數的話,前兩位相乘,後面個位相乘直接放在後面,例如242x248,前面應該是24x25=600,後面應該是2x8=16,運算結果應該是60016。
小數除法的簡便運算
小數除法的簡便計算與整數除法的簡便計算一樣,用到的是除法性質。
除法性質1、A ÷ B ÷ C = A ÷ ( B × C )
如:42÷2.8 =42÷( 0.7 × 4 )= 42 ÷ 0.7 ÷ 4 = 60 ÷ 4 = 15
如:420÷2.5÷4 = 420÷(2.5×4 )= 420 ÷ 10 = 42
除法性質2、 (a-b)÷c=a÷c-b÷c
除法性質3、 A ÷ ( B ÷ C ) = A ÷ B × C
除法性質4、 A × ( B ÷ C ) = A × B ÷ C
一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。
示例:
計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
示例:
計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
示例:
計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
示例:
計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
數學乘法運算定律
整數的乘法運算滿足:交換律,結合律,分配律,消去律。
隨著數學的發展, 運算的對象從整數發展為更一般群。
群中的乘法運算不再要求滿足交換律。 最有名的非交換例子,就是哈密爾頓發現的四元數群。 但是結合律仍然滿足。
1、乘法交換律:ab=ba,註:字母與字母相乘,乘號不用寫,或者可以寫成「·」。
2、乘法結合律:(ab)c=a(bc)
3、乘法分配律:(a+b)c=ac+bc