1. 簡便運算的16種運算方法是什麼
一、運用乘法分配律簡便計算
乘法分配律指的是:
例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
(1)10154簡便方法計算擴展閱讀:
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。
乘法結合律
乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
2. 1+2+3+4+5……+50怎麼算是簡便方法
1+2+3+4+5+···+50 可按照以下步驟進行簡便運算:
1+2+3+4+5+···+50
=0+1+2+3+4+5+......+50
=(0+50)+(1+49)+......+(24+26)+25
=25×50+25
=25×(50+1)
=25×51
=1275。
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個復雜的算式變得很容易計算出得數。
常用的簡便運算方法主要有下述六種:
1、「湊整巧算」——運用加法的交換律、結合律進行計算。
2、運用乘法的交換律、結合律進行簡算。
3、運用減法的性質進行簡算。
4、運用除法的性質進行簡算。
5、運用乘法分配律進行簡算。
6、根據混合運算的法則進行簡算。
3. 102×45簡便計算
102乘以45的簡便計算方法如下:
102*45=(100+2)*45=100*45+2*45=4500+90=4590
這個方法運用了乘法的結合律和分配律,只要熟練掌握乘法、加法、減法、除法的各種運演算法則,就能快速、准確地算出答案。
(3)10154簡便方法計算擴展閱讀:
1、三個數相乘,先把前兩個數相乘,再和另外一個數相乘,或先把後兩個數相乘,再和另外一個數相乘,積不變。叫做乘法結合律。
表示方法:
字母表示:(a×b)×c=a×(b×c)
舉例:
69×125×8
=69×(125×8)
=69×1000
=69000
2、在兩個數的乘法運算中,在從左往右計算的順序,兩個因數相乘,交換因數的位置,積不變。具體說來就是:兩個數相乘,交換因數的位置,它們的積不變。叫做乘法交換律。
表示方法:
用字母表示:axb=bxa (注意,在乘法與數字中,乘號用·表示,例:(axb=bxa或者:a·b=b·a)。
舉例:
3×4=4×3=12
4. 101乘以0.45要簡便計算怎麼算
101×0.45
=(100+1)×0.45
=100×0.45+1×0.45
=45+0.45
=45.45
5. 如何進行簡便運算
簡便運算,就是利用運算定律或者是運算性質,巧用特殊數之間的特性進行巧算
乘法分配律為:兩個數的和與一個數相乘,先將它們與這個數分別相乘,再相加,積不變.即:(a+b)×c=a×c+b×c.反過來則:a×c+b×c=(a+b)×c
簡便計算常用方法:
1、利用運算定律。利用加法的交換律和結合律,乘法的交換律、結合律和分配律,可以使計算簡便。
2、分解因數。有的特殊數相乘是可以得到整數的,比如25和4,125和8等等,在我們遇到這些數字時,可以想辦法把它們變成能得到整數的數字。
3、數字變形。有的列式中的數字不能用簡便方式,但是我們把一些數字變形後就可以採用簡便方式,這時我們就要給數字變形了。
4、等差數列。有些算式的相鄰數字的差是相同的,這時我們可以採用等差數列公式算式。
5、設數法。有些算式中,有的數字是相同的,但是式子又比較長,這時我們可以把相同的數字組成的算式設為一個字母,然後把式子中相應的換成字母,再計算,就簡便多了。
6、湊整法。有些小數與整數相差很少,又有規律,這是我們可以湊成整數計算。
7、拆分法。拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
6. 簡便計算的方法!
有很多簡便計算的方法,以下是幾個常見的:
1. 視覺近似法:通過數字的視覺形態來推算計算結果。比如,當你算乘法時,你可以將一個較長的數字拆分成較短的數字計算,比如將45 x 9拆成45 x 10 - 45,這樣就可以得到答案是405。
2. 取整法:在計算過程中,可以將小數取整,以減少計算復雜度,再將最終結果還原成小數。比如,在計算8.7 x 6.2時,先計算8 x 6 = 48,然後將兩個小數位相加橘配再將結果還原成小數,即0.72。
3. 按位計演算法: 按位計算不同位數的數字可以幫助簡化計算。比如,當你計算354 + 187時,你可以從個位數位開始,先算出4 + 7 = 11,在十位數位計算5 + 8 + 1 = 14,在百位數櫻伍坦位算3 + 1 = 4,最終結果是541。
4. 利用計算器或應用程序:在進行一些簡單的計算時,你可以利用計算器或應用程序,比如手機或電腦上內置的計算機或使用線上計算器小工具,很快的得到計算結果。
以脊桐上是幾個簡便計算的方法,如果你需要更快、更准確的計算結果,可以嘗試將不同的方法相結合。