A. 兩位數乘兩位數的速演算法有哪些
兩位數乘兩位數的簡便演算法:經總結,兩橋茄位數乘兩位數的簡便演算法有很多種。但是,很多都不是萬能的,它們只針對一些有特殊規律的數字。現在,我發現了一種萬能的簡便方法,也即將把它敏升察公布於世。
任意兩位數相乘三步口演算法:
計算公式:ab x cd = ac + ad x bc + bd
1、 十位數乘十位數,是百位。(有滿十的加進千位)
2、個位數和十位數交叉相乘積相加,笑芹是十位。(有滿十的加進百位)
3、位數乘個位數,是個位。(有滿十的加進十位)
(1)乘法兩位數簡便方法擴展閱讀:
首先兩位數和兩位數相乘,第一個數加上第二個數的個位數,相加的數字寫在等號前面,例如13×15=,先在等號下寫18,分別作為百位和十位,即180,作為草稿。
其次,就把兩個兩位數的個位數相乘,得到的兩位數作為十位數和個位數,十位上的數字兩次相加,就可以得到正確答案,例如15×13=,5×3得15,15+180得到195。
B. 兩位數相乘的簡便方法
兩位數相乘的簡便方法的話,那麼我們可以嘗試將兩位數拆成兩部分進行計算,
比如說50×12=50×10+50×2=500+100=700。
C. 兩位數乘兩位數簡便運算
兩位數乘兩位數有如下速算口訣:
十幾乘以十幾的速算規律口訣:頭加後尾,尾乘尾(滿十進位)。
任意兩位數乘以11的速算規律口訣:兩頭一拉,中間相加,滿十進位。
頭同尾合十口訣:頭乘(頭加1)尾乘尾(不滿十前面用0佔位)。
任意兩位數相乘速算口訣:頭乘頭,尾乘尾放一排。
裡面相乘放中間,外面相乘放下面,通通相加是得數。
傳統的兩位數乘兩位數有豎式法,再出現進位的時候,列豎式的情況下,我們一定要注意好數位對齊,然後用一個數乘另外一個數,將得出來的數末位和個位對其之後,再用這個數乘十位上數去乘這個數的乘數,然後的出來的末位和乘數的十位對齊之後,將兩次的結果下落相加就可以了,這也是一種比較簡便的演算法。
我們經常會遇到兩位數乘兩位數的問題,我們計算的數字比較大時,在運算中會出現錯誤的,所以我們可以選擇一些比較快速的演算法,最後再用一個其他方式來進行一個驗算就可以了。
D. 怎麼算兩位數乘兩位數,所有的簡便方法
三年級數學這學期要學到兩位數乘兩位數,對於中年級的小同學來說,這種運算數字較大,相應的也有了難度,很容易在運算當中出錯,那麼,如何避免出錯,更快速地得出結果呢?
這里介紹三種豎式速演算法,第一種,是傳統的運算方法:
同樣是列豎式,先用兩個乘數的個位相乘,得數末位與乘數個位對齊。
接下來,兩個乘數的個位與十位交叉相乘,需要兩次,得數末位都與乘數十位對齊。
第四步,兩個乘數的十位相乘,得數末位與乘數百位對齊。
最後,統一相加,得出積。
這種速算方法的特點,是運算當中不需要進位,一目瞭然,更快得到運算的結果。
E. 怎樣能快速,算出兩位數乘兩位數
以下是一種快速算出兩位數乘兩位數的方法:
1. 例如,計算 87 x 53,先將兩個數字分解為十位數和個位數:87=80+7,53=50+3。
2. 將式子分解,先計算十位數的部分: 87 x 53 = (80+7) x (50+3)。
3. 乘法分配律,將式子拆開: 87 x 53 = 80 x 50 + 80 x 3 + 7 x 50 + 7 x 3。
4. 計算拆開後的式子: 87 x 53 = 4000 + 240 + 350 + 21 = 4591。
因此,87 x 53 = 4591。這種快速算乘法的方法稱為分解法,可以幫助我們快速計算兩位數乘兩位數,並且在掌跡培握這種方法後也可適用於更多位數的乘法。這個方法需要一些練習和習慣,但是一旦掌握了技巧姿指唯,可以大大提高計算速度。逗輪
F. 任意兩個兩位數相乘的簡便演算法
一、兩位數乘兩位數.1.十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾.例:12×14=?解:1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位.2.頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾.例:23×27=?2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位.3.第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾.例:37×44=?3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位.4.幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾.例:21×41=?2×4=82+4=61×1=121×41=8615.11乘任意數:口訣:首尾不動下落,中間之和下拉.例:11×23125=?2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一.6.十幾乘任意數:口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落.例:13×326=?13個位是33×3+2=113×2+6=123×6=1813×326=4238註:和滿十要進一.數學中關於兩位數乘法的「首同末和十」和「末同首和十」速演算法.所謂「首同末和十」,就是指兩個數字相乘,十位數相同,個位數相加之和為10,舉個例子,67×63,十位數都是6,個位7+3之和剛好等於10,我告訴他,象這樣的數字相乘,其實是有規律的.就是兩數的個位數之積為得數的後兩位數,不足10的,十位數上補0;兩數相同的十位取其中一個加1後相乘,結果就是得數的千位和百位.具體到上面的例子67×63,7×3=21,這21就是得數的後兩位;6×(6+1)=6×7=42,這42就是得數的前兩位,綜合起來,67×63=4221.類似,15×15=225,89×81=7209,64×66=4224,92×98=9016.我給他講了這個速算小「秘訣」後,小傢伙已經有些興奮了.在「糾纏」著讓我給他出完所有能出的題目並全部計算正確後,他又嚷嚷讓我教他「末同首和十」的速算方法.我告訴他,所謂「末同首和十」,就是相乘的兩個數字,個位數完全相同,十位數相加之和剛好為10,舉例來說,45×65,兩數個位都是5,十位數4+6的結果剛好等於10.它的計演算法則是,兩數相同的各位數之積為得數的後兩位數,不足10的,在十位上補0;兩數十位數相乘後加上相同的個位數,結果就是得數的百位和千位數.具體到上面的例子,45×65,5×5=25,這25就是得數的後兩位數,4×6+5=29,這29就是得數的前面部分,因此,45×65=2925.類似,11×91=1001,83×23=1909,74×34=2516,97×17=1649.為了易於大家理解兩位數乘法的普遍規律,這里將通過具體的例子說明.通過對比大量的兩位數相乘結果,我把兩位數相乘的結果分成三個部分,個位,十位,十位以上即百位和千位.(兩位數相乘最大不會超過10000,所以,最大隻能到千位)現舉例:42×56=2352其中,得數的個位數確定方法是,取兩數個位乘積的尾數為得數的個位數.具體到上面例子,2×6=12,其中,2為得數的尾數,1為個位進位數;得數的十位數確定方法是,取兩數的個位與十位分別交叉相乘的和加上個位進位數總和的尾數,為得數的十位數.具體到上面例子,2×5+4×6+1=35,其中,5為得數的十位數,3為十位進位數;得數的其餘部分確定方法是,取兩數的十位數的乘積與十位進位數的和,就是得數的百位或千位數.具體到上面例子,4×5+3=23.則2和3分別是得數的千位數和百位數.因此,42×56=2352.再舉一例,82×97,按照上面的計算方法,首先確定得數的個位數,2×7=14,則得數的個位應為4;再確定得數的十位數,2×9+8×7+1=75,則得數的十位數為5;最後計算出得數的其餘部分,8×9+7=79,所以,82×97=7954.同樣,用這種演算法,很容易得出所有兩位數乘法的積.