A. 畫圖解決的問題有哪些
藉助畫圖解題,是孩子打開解決問題大門的一把「金鑰匙」,其實很多問題都可以很快速的求解,比如幾何問題、路程問題,如果光靠想是很難想出答案的,畫圖就一目瞭然,下面整理小學數學6類畫圖解答題,快為孩子收藏吧。
平面圖
對於題目中條件比較抽象、不易直接根據所學知識寫出答案的問題,可以藉助畫平面圖幫助思考解題。
例1:
有兩個自然數A和B,如果把A增加12,B不變,積就增加72;如果A不變,B增加12,積就增加120,求原來兩數的積。
根據題目的條件比較抽象的特點,不妨借用長方形圖,把條件轉化為因數與積的關系。先畫一個長方形,長表示A,寬表示B,這個長方形的面積就是原來兩數的積。如圖(1)所示。
根據條件把A增加12,則長延長12,B不變即寬不變,如圖(2);同樣A不變即長不變,B增加12,則寬延長12,如圖(3)。從圖中不難找出:
原長方形的長(A)是120÷12=10
原長方形的寬(B)是72÷12=6
則兩數的積為10×6=60
藉助長方形圖,弄清了題中的條件,找到了解題的關鍵。
例2:
一個梯形下底是上底的1.5倍,上底延長4厘米後,這個梯形就變成一個面積為6O平方厘米的平行四邊形。求原來梯形面積是多少平方厘米?
根據題意畫平面圖:
從圖中可以看出:上、下底的差是4厘米,而這4厘米對應的正好是1.5-1=O.5倍。所以上底是4÷(1.5-1)=8(厘米),下底是8×1.5=12(厘米),高是60÷12=5(厘米),則原梯形的面積是(8+12)×5÷2=5O(平方厘米)。
立體圖
一些求積題,結合題目的內容畫出立體圖,這樣做,使題目的內容直觀、形象,有利於思考解題。
例1:
把一個正方體切成兩個長方體,表面積就增加了8平方米。原來正方體的表面積是多少平方米?
如果只憑想像,做起來比較困難。按照題意畫圖,可以幫助我們思考,找出解決問題的方法來。按題意畫立體圖:
從圖中不難看出,表面積增加了8平方米,實際上是增加 2個正方形的面,每個面的面積是8÷2=4(平方米)。原正方體是6個面,即表面積為4×6=24(平方米)。
例2:
用3個長3厘米、寬2厘米、高1厘米的長方體,拼成一個大長方體。這個大長方體的表面積是多少?
按題意畫立體圖來表示,三個長方體拼成的大長方體有以下三種
(1)拼成長方體的長是2×3=