❶ 用配方法求代數式的最大或最小值
用配方法求代數式的最值,通常是對一元二次多項式而言的,即滿足ax^2+bx+c(a,b不等於零)的形式.基本思路就是根據完全平方公式找到一個完全平方式,使之展開之後滿足其中的一次項和二次項.舉一個簡答的例子就明白了:
例如:求x^2-4x+9的最小值
因為x^2-4x=(x-2)^2-4
所以原式=(x-2)^2-4+9
=(x-2)^2+5
因為(x-2)^2為非負數,所以原式在x=2時取得最小值為0+5=5
對於復雜的式子同樣適用,例如:求3x^2-7x-5的最值
因為3x^2-7x=(√3x)^2-2*√3x*[7/(2√3)]+ [7/(2√3)]^2-[7/(2√3)]^2
=[√3x-7/(2√3)]^2-[7/(2√3)]^2
所以原式=[√3x-7/(2√3)]^2-[7/(2√3)]^2-5
顯然當√3x=7/(2√3)即x=7/6時,原式有最小值為0-[7/(2√3)]^2-5=-109/12
❷ 配方法怎麼解最小值和最大值
一,二次項系數<0,求最大值
先將多項式合並同類向後按降冪排列,提出二次項負號後的二次項和一次項。在括弧里加上一次項系數一半的平方,再減去二次項系數一般的平方,進行配方。。例如:求-x^2+6x+8的最大值。
原式=-(x^2-6x)+8
=-(x^2-6x+9-9)+8
=-(x^2-6x+9)+9+8
=-(x-3)^2+15
因為-(x-3)^2≤0
所以當x=3時,sax原式=15
二,二次項系數>〇,求最小值
合並同類項,按降冪排列。加上再減去一次項系數一半的平方,進行配方,由任何實數的平方都大於等於0得最小值、
例如:求x^2+6x+8的最小值
解:原式=x^2+6x+9-9+8
=(x+3)^2-1
∵(x+3)^2≥0
∴當(x+3)^2=0時,原式最小=-1
還要注意在括弧前是負號時括弧里要變號~
❸ 怎樣用配方法求最小值和最大值
使用配方法。就是把這個分式化成
(
)*n+、、、、、
應該說一個分式只有最大值或者最小值,因為例如
把x^2+2x+3配方
=x^2+2x+1+2
=(x+1)^2+2
由這個配方後的結果來看。這個分式只有最小值,因為(x+1)^2隻有最小值,而「+2
」是不得變的。
即當x=-1時,也是此分式的最小值,就是2。
無論這個分式是怎樣的。只要根據完全平方的思路去化,化出一個完全平方後再加一串的東東數字,使他等於原分式。
❹ 初三數學怎樣用配方法求最大值和最小值
(1)首先要有二次函數的一般式y=ax²+bx+c(a≠0),如果沒有,則要先列出原始解析式,並整理得到二次函數的一般式y=ax²+bx+c(a≠0);
(2)通過「配方法」將二次函數的一般式y=ax²+bx+c(a≠0)變成頂點式y=a(x-h)²+k;
(3)從頂點式y=a(x-h)²+k中得到產生最值的條件和最值:當x=h時,y最大或最小=k。
例如:
y=(2+x)(100-10x)【原始解析式】
=200-20x+100x-10x²
=-10x²+80x+200【整理成一般式y=ax²+bx+c(a≠0)】
=-10(x²-8x)+200
=-10(x²-8x+4²-4²)+200
=-10【(x-4)²-4²】+200
=-10(x-4)²+160+200
=-10(x-4)²+360【配方法變成頂點式y=a(x-h)²+k】
則:當x=4時,y最大=360。【得到產生最值的條件「x=h」和最值「y最大或最小=k」】
❺ 用配方法求一元二次方程的最大值與最小值
2x²-7x+2
=2(x²-7x/2)+2
=2(x²-7x/2+49/16-49/16)+2
=2(x²-7x/2+49/16)-49/8+2
=2(x-7/4)²-33/8
所以x=7/4,最小值=-33/8
-3x²+5x+1
=-3(X^2-5X/3)+1
=-3(X^2-5X/3+25/36-25/36)+1
=-3(X-5/6)^2+25/12+1
=-3(X-5/6)^2+37/12
當X=5/6時,函數的最大值為133/25
不懂的歡迎追問,如有幫助請採納,謝謝!