① 應用時間序列分析有哪幾種方法
時間序列分析常用的方法:趨勢擬合法和平滑法。
1、趨勢擬合法就是把時間作為自變數,相應的序列觀察值作為因變數,建立序列值隨時間變化的回歸模型的方法。包括線性擬合和非線性擬合。
線性擬合的使用場合為長期趨勢呈現出線形特徵的場合。參數估計方法為最小二乘估計。
非線性擬合的使用場合為長期趨勢呈現出非線形特徵的場合。其參數估計的思想是把能轉換成線性模型的都轉換成線性模型,用線性最小二乘法進行參數估計。實在不能轉換成線性的,就用迭代法進行參數估計。
2、平滑法是進行趨勢分析和預測時常用的一種方法。它是利用修勻技術,削弱短期隨機波動對序列的影響,使序列平滑化,從而顯示出長期趨勢變化的規律 。
(1)常見的時間序列分類方法有哪些擴展閱讀
時間序列分析的主要用途:
1、系統描述
根據對系統進行觀測得到的時間序列數據,用曲線擬合方法對系統進行客觀的描述。
2、系統分析
當觀測值取自兩個以上變數時,可用一個時間序列中的變化去說明另一個時間序列中的變化,從而深入了解給定時間序列產生的機理。
3、預測未來
一般用ARMA模型擬合時間序列,預測該時間序列未來值。
4、決策和控制
根據時間序列模型可調整輸入變數使系統發展過程保持在目標值上,即預測到過程要偏離目標時便可進行必要的控制。
② 16種常用的數據分析方法-時間序列分析
時間序列(time series)是系統中某一變數的觀測值按時間順序(時間間隔相同)排列成一個數值序列,展示研究對象在一定時期內的變動過程,從中尋找和分析事物的變化特徵、發展趨勢和規律。它是系統中某一變數受其它各種因素影響的總結果。
研究時間序列主要目的可以進行預測,根據已有的時間序列數據預測未來的變化。時間序列預測關鍵:確定已有的時間序列的變化模式,並假定這種模式會延續到未來。
時間序列的基本特點
假設事物發展趨勢會延伸到未來
預測所依據的數據具有不規則性
不考慮事物發展之間的因果關系
時間序列數據用於描述現象隨時間發展變化的特徵。
時間序列考慮因素
時間序列分析就其發展歷史階段和所使用的統計分析方法看分為傳統的時間序列分析和現代時間序列分析,根據觀察時間的不同,時間序列中的時間可以是可以是年份、季度、月份或其他任何時間形式。
時間序列分析時的主要考慮的因素是:
l長期趨勢(Long-term trend)
時間序列可能相當穩定或隨時間呈現某種趨勢。
時間序列趨勢一般為線性的(linear),二次方程式的 (quadratic)或指數函數(exponential function)。
l季節性變動(Seasonal variation)
按時間變動,呈現重復性行為的序列。
季節性變動通常和日期或氣候有關。
季節性變動通常和年周期有關。
l周期性變動(Cyclical variation)
相對於季節性變動,時間序列可能經歷「周期性變動」。
周期性變動通常是因為經濟變動。
l隨機影響(Random effects)
除此之外,還有偶然性因素對時間序列產生影響,致使時間序列呈現出某種隨機波動。時間序列除去趨勢、周期性和季節性後的偶然性波動,稱為隨機性(random),也稱不規則波動(irregular variations)。
時間序列的主要成分
時間序列的成分可分為4種:
l趨勢(T)、
l季節性或季節變動(S)、
l周期性或循環波動(C)、
l隨機性或不規則波動(I)。
傳統時間序列分析的一項主要內容就是把這些成分從時間序列中分離出來,並將它們之間的關系用一定的數學關系式予以表達,而後分別進行分析。
時間序列建模基本步驟
1)用觀測、調查、統計、抽樣等方法取得被觀測系統時間序列動態數據。
2)根據動態數據作相關圖,進行相關分析,求自相關函數。
相關圖能顯示出變化的趨勢和周期,並能發現跳點和拐點。
跳點是指與其他數據不一致的觀測值。如果跳點是正確的觀測值,在建模時應考慮進去,如果是反常現象,則應把跳點調整到期望值。
拐點則是指時間序列從上升趨勢突然變為下降趨勢的點。如果存在拐點,則在建模時必須用不同的模型去分段擬合該時間序列,例如採用門限回歸模型。
3)辨識合適的隨機模型,進行曲線擬合,即用通用隨機模型去擬合時間序列的觀測數據。
對於短的或簡單的時間序列,可用趨勢模型和季節模型加上誤差來進行擬合。
對於平穩時間序列,可用通用ARMA模型(自回歸滑動平均模型)及其特殊情況的自回歸模型、滑動平均模型或組合-ARMA模型等來進行擬合。
當觀測值多於50個時一般都採用ARMA模型。對於非平穩時間序列則要先將觀測到的時間序列進行差分運算,化為平穩時間序列,再用適當模型去擬合這個差分序列。
spss時間序列分析過程
第一步:定義日期標示量:
打開數據文件,單擊"數據",選擇"定義日期和時間",彈出"定義日期"對話框,
數據中的起始時間就是數據文件裡面的單元格第一個時間,我的第一個是1997年8月,每行表示的是月度銷售量,因此,需要從"定義日期"對話框的左側"個案是"框中選擇"年,月",在左側輸入『1997』,月框中輸入『8』,表示第一個個案的起始月是1997年8月,
最後點擊確認,這樣spss數據文件裡面就會生成3個新的變數
如下圖:
第二步:了解時間序列的變化趨勢
了解時間序列的變化趨勢做一個序列表就可以了,單擊"分析",裡面選擇"時間序列預測,選擇"序列圖"對話框,然後把'平均值'移到"變數"框裡面,『DATE_』移到"時間軸標簽"框中,單擊"確定"。結果如圖
根據序列圖的分析知道,序列的波動隨著季節的波動越來越大,所以我們選擇乘法模型;
第三步:分析
單擊「分析」,選擇時間序列預測,然後選擇「季節性分解」,彈出「季節性分解」對話框,確認無誤之後點擊確定,如圖:
多了四個變數:
lERR表示誤差分析;
lSAS表示季節因素校正後序列;
lSAF表示季節因子;
lSTC表示長期趨勢和循環變動序列。
我們可以把新出現的四個變數、平均值和DATE_做序列圖。先把ERR、SAS、STC和平均值和DATE_做個序列圖,效果如下:
再單獨做個SAT和DATE_的時間序列圖
第四步:預測
1、 單擊「分析」,選擇「時間序列預測」,然後選擇「創建傳統模型」,之後就會彈出「時間序列建模」對話框。
2、 將「平均值」移至「因變數」框中,然後確定中間的「方法」,在下拉列表中選擇「專家建模器」項,單擊右側的「條件」按鈕,彈出「時間序列建模器:專家建模器條件」對話框。
3、 在「時間序列建模器:專家建模器條件」對話框的「模型」選項卡中,在「模型類型」框中選擇「所有模型」項,並勾選「專家建模器考慮季節性模型」復選框,設置完,點「繼續」按鈕
4、 在「時間序列建模器」對話框中,切換至「保存」選項卡中,勾選「預測值」復選框,單擊「導出模型條件」框中「XML文件」後面的「瀏覽」按鈕,然後設置導出的模型文件和保存路徑,然後單擊「確定」按鈕就可以了。
做完上面的步驟之後,在原始數據上面就又會多一列預測值出現。如圖:
之前保存了預測的模型,我們現在就利用那個模型進行預測數據。
1、 單擊「分析」,選擇「時間序列預測」,然後選擇「應用傳統模型」,彈出「應用模型序列」對話框。具體的操作如下圖:
最後一步切換至「保存」界面,勾選「預測值」之後單擊確定就可以了。
從預測值直接看看不出來,可以把預測的數據和原始數據放到一起看下,也是直接做序列圖就可以。
這樣就完成了一次時間序列的模型,具體的預測數據可以看原始數據上面的出現的新的一列數據。
- End -
③ 時間序列預測法的分類
時間序列預測法可用於短期、中期和長期預測。根據對資料分析方法的不同,又可分為:簡單序時平均數法、加權序時平均數法、移動平均法、加權移動平均法、趨勢預測法、指數平滑法、季節性趨勢預測法、市場壽命周期預測法等。
簡單序時平均數法也稱算術平均法。即把若干歷史時期的統計數值作為觀察值,求出算術平均數作為下期預測值。這種方法基於下列假設:「過去這樣,今後也將這樣」,把近期和遠期數據等同化和平均化,因此只能適用於事物變化不大的趨勢預測。如果事物呈現某種上升或下降的趨勢,就不宜採用此法。
加權序時平均數法就是把各個時期的歷史數據按近期和遠期影響程度進行加權,求出平均值,作為下期預測值。
簡單移動平均法就是相繼移動計算若干時期的算術平均數作為下期預測值。
加權移動平均法即將簡單移動平均數進行加權計算。在確定權數時,近期觀察值的權數應該大些,遠期觀察值的權數應該小些。
上述幾種方法雖然簡便,能迅速求出預測值,但由於沒有考慮整個社會經濟發展的新動向和其他因素的影響,所以准確性較差。應根據新的情況,對預測結果作必要的修正。
指數平滑法即根據歷史資料的上期實際數和預測值,用指數加權的辦法進行預測。此法實質是由內加權移動平均法演變而來的一種方法,優點是只要有上期實際數和上期預測值,就可計算下期的預測值,這樣可以節省很多數據和處理數據的時間,減少數據的存儲量,方法簡便。是國外廣泛使用的一種短期預測方法。
季節趨勢預測法根據經濟事物每年重復出現的周期性季節變動指數,預測其季節性變動趨勢。推算季節性指數可採用不同的方法,常用的方法有季(月)別平均法和移動平均法兩種:a.季(月)別平均法。就是把各年度的數值分季(或月)加以平均,除以各年季(或月)的總平均數,得出各季(月)指數。這種方法可以用來分析生產、銷售、原材料儲備、預計資金周轉需要量等方面的經濟事物的季節性變動;b.移動平均法。即應用移動平均數計算比例求典型季節指數。
市場壽命周期預測法 就是對產品市場壽命周期的分析研究。例如對處於成長期的產品預測其銷售量,最常用的一種方法就是根據統計資料,按時間序列畫成曲線圖,再將曲線外延,即得到未來銷售發展趨勢。最簡單的外延方法是直線外延法,適用於對耐用消費品的預測。這種方法簡單、直觀、易於掌握。
④ 什麼是時間序列
時間序列法是一種定量預測方法,亦稱簡單外延方法。在統計學中作為一種常用的預測手段被廣泛應用。時間序列通常有以下三種方法:
1.方法一是把一個時間序列的數值變動,分解為幾個組成部分,通常分為:
(1)傾向變動,亦稱長期趨勢變動T;
(2)循環變動,亦稱周期變動C;
(3)季節變動,即每年有規則地反復進行變動S;
(4)不規則變動,亦稱隨機變動I等。然後再把這四個組成部分綜合在一起,得出預測結果。
2.方法二是把預測對象、預測目標和對預測的影響因素都看成為具有時序的,為時間的函數,而時間序列法就是研究預測對象自身變化過程及發展趨勢。
3.方法三是根據預測對象與影響因素之間的因果關系及其影響程度來推算未來。與目標的相關因素很多,只能選擇那些因果關系較強的為預測影響的因素。
時間序列分析在第二次世界大戰前應用於經濟預測。二次大戰中和戰後,在軍事科學、空間科學、氣象預報和工業自動化等部門的應用更加廣泛。
⑤ 對時間序列的分析方法有哪幾種
1、 時間序列 取自某一個隨機過程,如果此隨機過程的隨機特徵不隨時間變化,則我們稱過程是平穩的;假如該隨機過程的隨機特徵隨時間變化,則稱過程是非平穩的。 2、 寬平穩時間序列的定義:設時間序列 ,對於任意的 , 和 ,滿足: 則稱 寬平穩。 3、Box-Jenkins方法是一種理論較為完善的統計預測方法。他們的工作為實際工作者提供了對時間序列進行分析、預測,以及對ARMA模型識別、估計和診斷的系統方法。使ARMA模型的建立有了一套完整、正規、結構化的建模方法,並且具有統計上的完善性和牢固的理論基礎。 4、ARMA模型三種基本形式:自回歸模型(AR:Auto-regressive),移動平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。 (1) 自回歸模型AR(p):如果時間序列 滿足 其中 是獨立同分布的隨機變數序列,且滿足: , 則稱時間序列 服從p階自回歸模型。或者記為 。 平穩條件:滯後運算元多項式 的根均在單位圓外,即 的根大於1。 (2) 移動平均模型MA(q):如果時間序列 滿足 則稱時間序列 服從q階移動平均模型。或者記為 。 平穩條件:任何條件下都平穩。 (3) ARMA(p,q)模型:如果時間序列 滿足 則稱時間序列 服從(p,q)階自回歸移動平均模型。或者記為 。 特殊情況:q=0,模型即為AR(p),p=0, 模型即為MA(q)。 二、時間序列的自相關分析 1、自相關分析法是進行時間序列分析的有效方法,它簡單易行、較為直觀,根據繪制的自相關分析圖和偏自相關分析圖,我們可以初步地識別平穩序列的模型類型和模型階數。利用自相關分析法可以測定時間序列的隨機性和平穩性,以及時間序列的季節性。 2、自相關函數的定義:滯後期為k的自協方差函數為: ,則 的自相關函數為: ,其中 。當序列平穩時,自相關函數可寫為: 。 3、 樣本自相關函數為: ,其中 ,它可以說明不同時期的數據之間的相關程度,其取值范圍在-1到1之間,值越接近於1,說明時間序列的自相關程度越高。 4、 樣本的偏自相關函數: 其中, 。 5、 時間序列的隨機性,是指時間序列各項之間沒有相關關系的特徵。使用自相關分析圖判斷時間序列的隨機性,一般給出如下准則: ①若時間序列的自相關函數基本上都落入置信區間,則該時間序列具有隨機性; ②若較多自相關函數落在置信區間之外,則認為該時間序列不具有隨機性。 6、 判斷時間序列是否平穩,是一項很重要的工作。運用自相關分析圖判定時間序列平穩性的准則是:①若時間序列的自相關函數 在k>3時都落入置信區間,且逐漸趨於零,則該時間序列具有平穩性;②若時間序列的自相關函數更多地落在置信區間外面,則該時間序列就不具有平穩性。 7、 ARMA模型的自相關分析 AR(p)模型的偏自相關函數 是以p步截尾的,自相關函數拖尾。MA(q)模型的自相關函數具有q步截尾性,偏自相關函數拖尾。這兩個性質可以分別用來識別自回歸模型和移動平均模型的階數。ARMA(p,q)模型的自相關函數和偏相關函數都是拖尾的。 三、單位根檢驗和協整檢驗 1、單位根檢驗 ①利用迪基—福勒檢驗( Dickey-Fuller Test)和菲利普斯—佩榮檢驗(Philips-Perron Test),我們也可以測定時間序列的隨機性,這是在計量經濟學中非常重要的兩種單位根檢驗方法,與前者不同的事,後一個檢驗方法主要應用於一階自回歸模型的殘差不是白雜訊,而且存在自相關的情況。 ②隨機游動 如果在一個隨機過程中, 的每一次變化均來自於一個均值為零的獨立同分布,即隨機過程 滿足: , ,其中 獨立同分布,並且: , 稱這個隨機過程是隨機游動。它是一個非平穩過程。 ③單位根過程 設隨機過程 滿足: , ,其中 , 為一個平穩過程並且 ,,。 2、協整關系 如果兩個或多個非平穩的時間序列,其某個現性組合後的序列呈平穩性,這樣的時間序列間就被稱為有協整關系存在。這是一個很重要的概念,我們利用Engle-Granger兩步協整檢驗法和J 很高興回答樓主的問題 如有錯誤請見諒