A. 連加法的簡便計算方法
連加法的簡便計算方法是:
1.有相同加數的,可以用乘法計算,有幾個相同加數就乘以幾。再加不同的加數。
2.沒有相同加數的,把能夠湊成整十整百的數先加再加其餘的數。也就是利用乘法結合律和交換律。
B. 幾個相同的數相加,用什麼法計算更方便
求幾個相同加數的和,用(乘)法計算比較簡單。
乘法:求兩個數乘積的運算。
1、乘法的含義
乘法是求幾個相同加數連加的和的簡便演算法。如:計算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.
2、乘法算式的寫法和讀法
⑴連加算式改寫為乘法算式的方法。求幾個相同加數的和,可以用乘法計算。寫乘法算式時,可以用乘法計算。寫乘法算式時,可以先寫相同的加數。
然後寫乘號,再寫相同加數的個數,最後寫等號與連加的和;也可以先寫相同加數的個數,然後寫乘號,再寫相同加數,最後寫等號與連加的和。
如:4+4+4=12改寫成乘法算式是4×3=12或3×4=12
⑵乘法算式的讀法。讀乘法算式時,要按照算式順序來讀。如:6×3=18讀作:「6乘3等於18」。
(2)很多個數相加有什麼簡便的方法擴展閱讀
「幾和幾相加」與「幾個幾相加」區別
求幾和幾相加,用幾加幾;如:求4和3相加是多少,用加法(4+3=7)。求幾個幾相加,用幾乘幾。如:求4個3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)
補充:幾和幾相乘,求積,用幾×幾。如:2和4相乘用2×4=8
2個乘數都是幾,求積,用幾×幾。如:2個8相乘用8×8=64
一個乘法算式可以表示兩個意義,如「4×2」既可以表示「4個2相加」,也可以表示「2個4相加」。「5+5+5」寫成乘法算式是(3×5=15)或(5×3=15),
都可以用口訣(三五十五)來計算,表示(3)個(5)相加,3×5=15讀作:3乘5等於15. 5×3=15讀作:5乘3等於15。
C. 求加法心算速算口訣或技巧
加法速算技巧
1、 不進位的加法算式:(一定要先看清楚進不進位)
加法速算技巧
A :兩位數加一位數:先寫上十位數,再接著寫上個位數的和。
B 兩位數加兩位數:先寫十位數的和,再寫個位數的和
C 多位數加多位數:從高位起,依次寫上相同位上的數的和
2、進位加法算式(一定要觀察是否進位)
加法速算技巧進位加法的關鍵是向高一位進1,進1既然已經是一定的事情,可不可以先進1呢?觀察好後可以從高位先算起。
A 兩位數加一位數:先寫上十位數加1的和,再接著寫個位數的和的個位數(用二十以內加法口訣)
B 兩位數加一位數:先寫上兩位數湊成整十後的十位數,再寫上一位數分出一個數後剩餘的數。(即把一位數分開,幫兩 位數湊十)
加法速算技巧 15+8= 過程:15+5=20 先寫2,8分出5後剩餘3,再接著寫3。
(3)很多個數相加有什麼簡便的方法擴展閱讀:
加法是完全一致的事物也就是同類事物的重復或累計,是數字運算的開始,不同類比如一個蘋果+一個橘子其結果只能等於二個水果就存在分類與歸類的關系。
減法是加法的逆運算;乘法是加法的特殊形式;除法是乘法的逆運算;乘方是乘法的簡便形式;開方是乘方的逆運算;對數是在乘方的各項中尋找規律;由對數而發展出導數;然後是微分和積分。數字運算的發展,是更特殊的情況,更高度重復下的規律。
有許多二進制操作可以被視為對實數的加法運算的概括。 抽象代數領域集中關注這種廣義的運算,它們也出現在集合理論和類別理論中。
抽象代數中的加法
矢量加法:
在線性代數中,向量空間是一個代數結構,允許添加任何兩個向量和縮放向量。 一個熟悉的向量空間是所有有序的實數對的集合;有序對(a,b)被解釋為從歐幾里德平面中的原點到平面中的點(a,b)的向量。 通過添加它們各自的坐標來獲得兩個向量的和:
集合理論和類別理論中的加法
增加自然數的方法是在集合理論中添加序數和基數。這些給出了兩個不同的概括,即自然數。與大多數加法操作不同,序數的加法是不可交換的。 然而,增加基數是與不相交聯合操作密切相關的交換操作。
在類別理論中,不相交加法被視為特殊情況,一般可能是所有加法概括中最為抽象的。 如直接總和和楔子總和,被命名為添加的聯系。
D. 加法簡便運算
加法的簡便演算法,就是要湊成整數,即:
整十、整百、整千……的數,以便於簡算。
如:
26+65+74=(26+74)+65=100+65=165;
123+965+877=(123+877)+965=1000+965=1965;
163+836+9=163+837-1+9=(163+837)+8=1000+8=1008;
……
在數的運算中,有加(+)、減(-)、乘(×)、除(÷)四種運算,我們在數學上又為了能更簡便計算它們,簡稱稱作簡算,簡算有以下幾種(公式詳見在常用特殊數的乘積、及簡算公式):
加法:(加法交換律) (加法結合律)(近似數)
乘法:(乘法交換律)(乘法結合律)(乘法分配律)(乘法分配律變化式(四個))
減法:(減法的基本性質)(近似數)
除法:(除法的基本性質)(商不變的性質)
這是小學數學計算題中最常見的一種。從學生一開始接觸計算就從各個不同的角度滲透了簡便運算的思想,到了四年級在計算題中簡便運算則做為獨立的題型正式出現,它是計算題中最為靈活的一種,能使學生思維的靈活性得到充分鍛煉,對提高學生的計算能力將起到非常大的作用。 何謂簡便運算,這是一個非常簡單的問題,但要正確地理解它,決不能為了追求簡便的形式而進行簡便運算。對此,我的理解是:簡便運算應該是靈活、正確、合理地運用各種定義、定理、定律、性質、法則等等,改變原有的運算順序進行計算,通過簡便運算要大幅度地提高計算速度及正確率,使復雜的計算變得簡單 。也就是說:最重要的是靈活、合理地運用各種定義、定理、定律、性質、法則。尤其要強調「靈活」、「合理」。下面就我在教學中遇到的情況,談談我的看法。
E. 求幾個()加數的和用()計算比較簡便
解答:
求幾個(相同)加數的和用(乘法)計算比較簡便
這是在初學乘法時學的類似定義的知識點
比如說
以前在計算2+2+2時,是逐項相加
現在就是2*3=6
例如:
求幾個(數相加)的和,用乘法計算比較簡便。
比如:
3+3+3+3
=3×4
=12
(5)很多個數相加有什麼簡便的方法擴展閱讀:
「4.9+0.1-4.9+0.1」這是小學數學第八冊練習二十七第二題中的一道非常簡單的常見簡便運算題。當我給學生布置了這道題後,我以為學生會毫不猶豫地使用加法交換率和結合率,順利完成此題,但是批改學生的作業時,卻發現了以下三種情況:
①、4.9+0.1-4.9+0.1=(4.9-4.9)+(0.1+0.1);
②、4.9+0.1-4.9+0.1=4.9-4.9+0.1+0.1;
③、4.9+0.1-4.9+0.1=(4.9+0.1)-(4.9+0.1)。
F. 加減法簡便運算的技巧和方法
加減法簡便運算的技巧和方法如下:
算基森沖術運算介紹:
算術運算簡稱運算。指按照規定的法則和順序對式題或算式進行運算,並求出結果的過程。包括:加法、減法、乘法、除法、乘方、開方等幾種運算形式。其中加減為一級運算,乘除為二級運算,乘方、開方為三級運算。在一道算式中,如果有幾級運算存在,則應先進行高級運算,再進行低一級的運算。
如:3+22×4=3+4×4=3+16=19;如春中果只存在同級運算;則按從左至右的順序進行;如果算式中有括弧,則應先算括弧里邊,再按上述規則進行計算。如:(3+2)2×4=52×4=100。運算和計算略有區別,計算是指把橫式中的數按運算符號和規定的順序求得結果,可以按運演算法則,也可以按口算或其他簡便的方式直接求得結果。而運算則是指求得結果的過程。