① 12×5×20用簡便計算
12×5,×20,用簡便方法計算。根據乘法的結合律。先用五和二十相乘先用五和20相乘等於100,12,再乘以100就等於1200。
② 75×24用簡便方法怎麼算
計算過程如下:
75×24
= (70+5)×24
= 70×24+5× 24
= 1680+120
= 1800
乘法運算性質:
幾個數的積乘一個數,可以讓積里的任意一個因數乘這個數,再和其他數相乘。例如:(25×3 × 9)×4=25×4×3×9=2700。
兩個數的差與一個數相乘,可以讓被減數和減數分別與這個數相乘,再把所得的積相減。例如: (137-125)×8=137×8-125×8=96。
③ 25×24用簡便方法計算
解析:採用拆分法,然後根據乘法結合律進行計算即可。
25×24
=25×4×6(將24拆分成4×6)
=100×6(將25和4相乘得到整百數,使計算簡單化)
=600
乘法結合律用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。
簡便方法計算的相關定律
1、加法交換律:兩個加數交換位置,和不變,這叫做加法交換律。
字母公式:a+b+c=a+c+b
2、加法結合律:先把前兩個數相加,或先把後兩個數相加,和不變叫做加法結合律。
字母公式:a+b+c=a+(b+c)
3、乘法交換律:兩個因數交換位置,積不變。
字母公式:a×b=b×a
4、乘法結合律:先乘前兩個數,或先乘後兩個數,積不變。
字母公式:a×b×c=a×(b×c)
5、乘法分配律:兩個數的和,乘以一個數,可以拆開來算,積不變。
字母公式:(a+b)×c=a×c+b×c
6、除法性質的概念為:一個數連續除以兩個數,可以先把後兩個數相乘,再相除。
字母公式:a÷b÷c=a÷(b×c)
7、商不變的規律
概念:被除數和除數同時乘上或除以相同的數(0除外)它們的商不變。
字母公式:a÷b=(an)÷(bn)=(a÷n)÷(b÷n) (n≠0 b≠0)
8、減法性質:一個數連續減去兩個數,等於這個數減去兩個數的和。
字母公式:a-b-c=a-(b+c)
④ 27x4x5怎麼用簡便方法計算
簡便方法計算如下:
27×4×5
=27×20
=540
這道題主要運用了乘法結合律的運算方法。我們要先計算後面的的4×5,這樣計算起來會簡便很多。
拓展資料:
乘法結合律的寫法是(ab)c=a(bc)、(a·b)·c=a·(b·c)。乘法結合律是乘法運算的一種,也是眾多簡便方法之一。三個數相乘,先把前兩個數相乘,再和另外一個數相乘,或先把後兩個數相乘,再和另外一個數相乘,積不變。叫做乘法結合律。交換律嚴格意義來說,和結合律相似。
這道題遵循旅侍的解題思路:乘法結合律的使用前提是幾個數相乘,其中有一個數尾數拆隱吵是5,另一個數尾數攜飢是偶數,把這兩個數放一起先乘,然後再乘以其他的數字,這樣使計算變得更簡便。
幾種常見公式:
1、乘法分配律公式:(a+b)×c=a×c+b×c
2、乘法結合律公式:(a×b)×c=a×(b×c)
3、乘法交換律公式:a×b=b×a
4、加法結合律公式:(a+b)+c=a+(b+c)
⑤ 怎麼用簡便方法計算
乘法公式:因數x因數=積;積÷因數=因數。除法公式:被除數÷除數=商;商x除數=被除數;被除數÷商=除數。乘除法運演算法則:1、同級運算時,物鍵從左到右依次計算。2、兩級運算時,先算乘除,後算加減。3、有括弧時,先算括桐螞尺號裡面的,再算括弧外面的。4、有多層括弧時,先算小括弧里的,再算中括弧裡面的,再算大括弧裡面的,最後算括弧外面的。乘法是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。整數(包括負數)、有理數(分數)和實數的乘法由這個基本定義的系統泛化來定義。乘法也可以被視為計算排列在矩形(整數)中的對象或查找其邊長度給定的矩形的區域。矩形的區域不取決於首先測量哪一側,這說明了交換屬性。兩種測量的產物是一種新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。除法是四則運算之一。已知兩個因數的積與其中一個非零因數,求局高另一個因數的運算叫做除法。兩個數相除又叫做兩個數的比。若ab=c(b≠0),用積數c和因數b來求另一個因數a的運算就是除法,寫作c÷b,讀作c除以b(或b除c)。其中c叫做被除數,b叫做除數,運算的結果a叫做商。
⑥ 2乘到20有什麼簡便方法
2乘到20是沒有簡便計算的,只有實打實的算。=2432902008176640000(6)527乘二十怎麼用簡便方法計算擴展閱讀:簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算