A. 簡便運算的16種運算方法是什麼
一、運用乘法分配律簡便計算
乘法分配律指的是:
例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
(1)簡便運算有多少種運算方法擴展閱讀:
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。
乘法結合律
乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
B. 簡便的運算有哪些
簡便運算方法有:
①符號搬家法。
②結合律法。
③乘法分配法。
④借來還去法。
⑤拆分法
①符號搬家法:富豪班假發主要是根據加法交換律以及乘法交換律來進行的,在小學四年級的時候,我們也學習了相關的運算方式,當一個計算題只有一個同一級運算的時候,簡單來說的話只有乘除法或者只有加減運算的時候,而且還要滿足沒有括弧的時候,我們就可以使用帶符號搬家的方法了。
②結合律法:結合律法有兩種形式,一個是加括弧法一個是去括弧法,加括弧法是當計算題中只有加減運算並且還沒有括弧的時候,我們可以直接添加括弧,而括弧內的內容和運算加法依然不變,但是在減號後面的時候要是直接添加括弧的話則是需要將運算方法改變,原有是加法的時候應該改變為減法。
而原有減法則是需要改編成加法,簡單來描述的話則是在加減運算中括弧前面是加號的時候不變號,括弧前面是減號的時候需要變號。
去括弧法主要當一個計算題只有加減運算,但是有括弧的時候,我們可以將加號後面的括弧是直接去掉的,原來是加還是加,原來是減還是減,當有括弧的時候且括弧前面是減號的時候則是需要改變內部的運算,原來是加現在變減,原來是減現在變加。
③乘法分配法:乘法分配法主要有兩種一種就是分配法另外一種就是提取公因式法,分配法主要是括弧里是加或者是減的運算的時候,和另外一個數相乘的話需要注意分配,而提取公因式的時候則是需要提取一個相同的公因式。
④借來還去法:顧名思義,在使用的時候,一定要注意其中的規律,並且要做到有借有還,這樣才不會將題做錯。
⑤拆分法:顧名思義,拆分法就是將一個數拆分成為幾個數,對於這些數之間,一定要注意的是拆分的時候不能改變數的大小。
C. 簡便方法計算的方法 簡便方法計算有哪些
1、簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc;cx(a-b)=axc-bxc。
2、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
3、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
4、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小。
5、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
D. 簡便演算法有哪些呢
簡便演算法有如下:
1、乘法分配律
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。
2、乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。
3、乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a。
4、加法交換律
加法交換律用於調換各個數的位置:a+b=b+a。
5、加法結合律
(a+b)+c=a+(b+c)。
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
E. 數學簡便計算,有哪幾種方法
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
F. 簡便計算有哪些方法
簡便計算有以下幾種方法:
精簡計算:將較復雜的計算問題簡化為更簡單的形式,以仿指減少計算量。例如,將一個較長的數字串拆分成更小的數字串,進行逐個計算。
逆向思維:採用逆向思維,將計算問題反過來解決。例如,對於一個乘法問題,可以採用除法的方式解決。
近似備清配計算:採用近似計算的方法,將較復雜的計算問題近似為一個簡單的近似值。例如,將一個較長的數字串四捨五入為一個整數。
線性化計算:將非線性的計算問題轉化為線性的計算問題,以便於進行計算。例如,將一個平方計算問題轉化為一個乘法計算問題。
利用規律:通過觀察計算問題中的規律,找出一些簡單的計算方法正中,以減少計算量。例如,對於一個乘法問題,如果其中一個數是2的冪次方,則可以採用移位運算進行計算。
G. 簡便演算法有哪些呢
簡便演算法有如下:
一、乘法分配律:簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。
二、乘法結合律:乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。
三、乘法交換律:乘法交換律用於調換各個數的位置:a×b=b×a。
四、加法交換律:加法交換律用於調換各個數的位置:a+b=b+a。
五、加法結合律:運用了運算定律與數字的基本性質,從而使計算簡便,(a+b)+c=a+(b+c)。
H. 簡便運算有哪些啊
簡便計算方法:
1、基準數法
若干個都接近某數的數相加,可以把某數作為基準數,然後把基準數與相加的個數相乘,再加上各數與基準數的差,就可以得到計算結果。
例如:81+85+82+78+79
=80x5+(1+5+2-2-1)
=400+5
=405
2、拆分法
主要是拆開後的一些分數互相抵消,達到簡化運算的目的,一般形如1/ax(a+1)的分數可以拆分成1/a-1/a+1。
例如:1/1x2+1/2x3+1/3x4+1/4x5+1/5x6
=1_1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6
=1-1/6
=5/6
簡便運算的注意事項:
在進行簡便運算,應注意運算符號(乘除和加減)和大、中、小括弧之間的關連,不要越級運算,以免發生運算錯誤。
簡便運算的相關定律
1、乘法分配律簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數,相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。
2、乘法結合律乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘。或先把後兩個數相乘,再和第一個數相乘,積不變。