㈠ 快速算出兩位數乘法的方法
兩位數乘法速算技巧原理:設兩位數分別為10A B,10C D,其積為S,根據多項式展開:S=(10A B)×(10C D)=10A×10C B×10C 10A×D B×D,而所謂速算,就是根據其中一些相等或互補(相加為十)的關系簡化上式,從而快速得出結果.註:下文中"--"代表十位和個位,因為兩位數的十位相乘得數的後面是兩個零,請大家不要忘了,前積就是前兩位,後積是後兩位,中積為中間兩位,滿十前一,不足補零.A.乘法速算一.前數相同的:1.1.十位是1,個位互補,即A=C=1,B D=10,S=(10 B D)×10 A×B方法:百位為二,個位相乘,得數為後積,滿十前一.例:13×17 13 7=2--("-"在不熟練的時候作為助記符,熟練後就可以不使用了)3×7=21---221即13×17=221 1.2.十位是1,個位不互補,即A=C=1,B D≠10,S=(10 B D)×10 A×B方法:乘數的個位與被乘數相加,得數為前積,兩數的個位相乘,得數為後積,滿十前一.例:15×17 15 7=22-("-"在不熟練的時候作為助記符,熟練後就可以不使用了)5×7=35---255即15×17=255 1.3.十位相同,個位互補,即A=C,B D=10,S=A×(A 1)×10 A×B方法:十位數加1,得出的和與十位數相乘,得數為前積,個位數相乘,得數為後積例:56×54(5 1)×5=30--6×4=24--3024 1.4.十位相同,個位不互補,即A=C,B D≠10,S=A×(A 1)×10 A×B方法:先頭加一再乘頭兩,得數為前積,尾乘尾,的數為後積,乘數相加,看比十大幾或小幾,大幾就加幾個乘數的頭乘十,反之亦然例:67×64(6 1)×6=42 7×4=28 7 4=11 11-10=1 4228 60=4288--4288方法2:兩首位相乘(即求首位的平方),得數作為前積山陸,兩尾數的和與首位相乘,得數作為中積,滿十進一,兩尾數碧衡相乘,得數作為後積.例:67×64 6×6=36--(4 7)×6=66-4×7=28--4288二、後數相同的:2.1.個位是1,十位互補即B=D=1,A C=10 S=10A×10C 101方法:十位與逗慧頃十位相乘,得數為前積,加上101..--8×2=16--101---1701 2.2.不是很簡便個位是1,十位不互補即B=D=1,A C≠10 S=10A×10C 10C 10A 1方法:十位數乘積,加上十位數之和為前積,個位為1..例:71×91 70×90=63--70 90=16-1--6461 2.3個位是5,十位互補即B=D=5,A C=10 S=10A×10C 25方法:十位數乘積,加上十位數之和為前積,加上25.例:35×75 3×7 5=26--25--2625 2.4不是很簡便個位是5,十位不互補即B=D=5,A C≠10 S=10A×10C 525方法:兩首位相乘(即求首位的平方),得數作為前積,兩十位數的和與個位相乘,得數作為中積,滿十進一,兩尾數相乘,得數作為後積.例:75×95 7×9=63--(7 9)×5=80-25--7125 2.5.個位相同,十位互補即B=D,A C=10 S=10A×10C B100 B2方法:十位與十位相乘加上個位,得數為前積,加上個位平方.例:86×26 8×2 6=22--36---2236 2.6.個位相同,十位非互補方法:十位與十位相乘加上個位,得數為前積,加上個位平方,再看看十位相加比10大幾或小幾,大幾就加幾個個位乘十,小幾反之亦然例:73×43 7×4 3=31 97 4=11 3109 30=3139---3139 2.7.個位相同,十位非互補速演算法2方法:頭乘頭,尾平方,再加上頭加尾的結果乘尾再乘10例:73×43 7×4=28 92809 (7 4)×3×10=2809 11×30=2809 330=3139---3139三、特殊類型的:3.1、一因數數首尾相同,一因數十位與個位互補的兩位數相乘.方法:互補的那個數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有十位用0補.例:66×37(3 1)×6=24--6×7=42--2442 3.2、一因數數首尾相同,一因數十位與個位非互補的兩位數相乘.方法:雜亂的那個數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有十位用0補,再看看非互補的因數相加比10大幾或小幾,大幾就加幾個相同數的數字乘十,反之亦然例:38×44(3 1)*4=12 8*4=32 1632 3 8=11 11-10=1 1632 40=1672--1672 3.3、一因數數首尾互補,一因數十位與個位不相同的兩位數相乘.方法:乘數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有十位用0補,再看看不相同的因數尾比頭大幾或小幾,大幾就加幾個互補數的頭乘十,反之亦然例:46×75(4 1)*7=35 6*5=30 5-7=-2 2*4=8 3530-80=3450--3450 3.4、一因數數首比尾小一,一因數十位與個手腦速算教程位相加等於9的兩位數相乘.方法:湊9的數首位加1乘以首數的補數,得數為前積,首比尾小一的數的尾數的補數乘以湊9的數首位加1為後積,沒有十位用0補.例:56×36 10-6=4 3 1=4 5*4=20 4*4=16---2016 3.5、兩因數數首不同,尾互補的兩位數相乘.方法:確定乘數與被乘數,反之亦然.被乘數頭加一與乘數頭相乘,得數為前積,尾乘尾,得數為後積.再看看被乘數的頭比乘數的頭大幾或小幾,大幾就加幾個乘數的尾乘十,反之亦然例:74×56(7 1)*5=40 4*6=24 7-5=2 2*6=12 12*10=120 4024 120=4144---4144 3.6、兩因數首尾差一,尾數互補的演算法方法:不用向第五個那麼麻煩了,取大的頭平方減一,得數為前積,大數的尾平方的補整百數為後積例:24×36 32 3*3-1=8 6^2=36 100-36=64---864 3.7、近100的兩位數演算法方法:確定乘數與被乘數,反之亦然.再用被乘數減去乘數補數,得數為前積,再把兩數補數相乘,得數為後積(未滿10補零,滿百進一)例:93×91 100-91=9 93-9=84 100-93=7 7*9=63---8463 B、平方速算一、求11~19的平方同上1.2,乘數的個位與被乘數相加,得數為前積,兩數的個位相乘,得數為後積,滿十前一例:17×17 17 7=24-7×7=49---289三、個位是5的兩位數的平方同上1.3,十位加1乘以十位,在得數的後面接上25.例:35×35(3 1)×3=12--25--1225四、十位是5的兩位數的平方同上2.5,個位加25,在得數的後面接上個位平方.例:53×53 25 3=28--3×3=9--2809四、21~50的兩位數的平方求25~50之間的兩數的平方時,記住1~25的平方就簡單了,11~19參照第一條,下面四個數據要牢記:21×21=441 22×22=484 23×23=529 24×24=576求25~50的兩位數的平方,用底數減去25,得數為前積,50減去底數所得的差的平方作為後積,滿百進1,沒有十位補0.例:37×37 37-25=12--(50-37)^2=169--1369 C、加減法一、補數的概念與應用補數的概念:補數是指從10、100、1000…中減去某一數後所剩下的數.例如10減去9等於1,因此9的補數是1,反過來,1的補數是9.補數的應用:在速算方法中將很常用到補數.例如求兩個接近100的數的乘法或除數,將看起來復雜的減法運算轉為簡單的加法運算等等.D、除法速算一、某數除以5、25、125時1、被除數÷5=被除數÷(10÷2)=被除數÷10×2=被除數×2÷10 2、被除數÷25=被除數×4÷100=被除數×2×2÷100 3、被除數÷125=被除數×8÷1000=被除數×2×2×2÷1000在加、減、乘、除四則運算中除法是最麻煩的一項,即使使用速演算法很多時候也要加上筆算才能更快更准地算出答案.因本人水平所限,上面的演算法不一定是最好的心演算法其它由速算大師史豐收經過10年鑽研發明的快速計演算法,是直接憑大腦進行運算的方法,又稱為快速心算、快速腦算.這套方法打破人類幾千年從低位算起的傳統方法,運用進位規律,總結26句口訣,由高位算起,再配合指算,加快計算速度,能瞬間運算出正確結果,協助人類開發腦力,加強思維、分析、判斷和解決問題的能力,是當代應用數學的一大創舉.這一套計演算法,1990年由國家正式命名為"史豐收速演算法",現已編入中國九年制義務教育《現代小學數學》課本.聯合國教科文組織譽之為教育科學史上的奇跡,應向全世界推廣.史豐收速演算法的主要特點如下:⊙從高位算起,由左至右⊙不用計算工具⊙不列計算程序⊙看見算式直接報出正確答案⊙可以運用在多位數據的加減乘除以及乘方、開方、三角函數、對數等數學運算上速演算法演練實例Example of Rapid Calculation in Practice○史豐收速演算法易學易用,演算法是從高位數算起,記著史教授總結了的26句口訣(這些口訣不需速演算法26句口訣死背,而是合乎科學規律,相互連系),用來表示一位數乘多位數的進位規律,掌握了這些口訣和一些具體法則,就能快速進行加、減、乘、除、乘方、開方、分數、函數、對數…等運算.□本文針對乘法舉例說明○速演算法和傳統乘法一樣,均需逐位地處理乘數的每位數字,我們把被乘數中正在處理的那個數位稱為「本位」,而從本位右側第一位到最末位所表示的數稱「後位數」.本位被乘以後,只取乘積的個位數,此即「本個」,而本位的後位數與乘數相乘後要進位的數就是「後進」.○乘積的每位數是由「本個加後進」和的個位數即--□本位積=(本個十後進)之和的個位數○那麼我們演算時要由左而右地逐位求本個與後進,然後相加再取其個位數.現在,就以右例具體說明演算時的思維活動.(例題)被乘數首位前補0,列出算式:7536×2=15072乘數為2的進位規律是「2滿5進1」7×2本個4,後位5,滿5進1,4 1得5 5×2本個0,後位3不進,得0 3×2本個6,後位6,滿5進1,6 1得7 6×2本個2,無後位,得2
㈡ 多位數乘一位數的計算方法
多位數乘一位數的計算方法是從個位算起,用一位數依次乘多位數的每一位,哪一位上乘得的積滿幾十,就要向前一位進幾。當遇到中間或末尾有0的多位數乘一位數時,我們可以利用0的特殊性質進行計算。
下面我們來學習多位數乘一位數中間或末尾有0的計算方法。
0的特殊性質:0乘任何數都得0。
1.在中間有0的多位數乘一位數的計算中忽略0的特殊性質。
2.在中間有0的多位數乘一位數的計算中遇到滿十或滿幾十需要進位時,忘記進位或加進位數。
末尾有0的多位數乘一位數通常有兩種計算方法。
(一位數對齊多位數的0) (一位數對齊多位數的0前面的數)
由上我們可以看出,末尾有0的多位數乘一位數的簡便計算方法是一位數對齊多位數的0前面的數,先用一位數去乘多位數的0前面的數,再看多位數的末尾有幾個0就在結果後面添幾個0。
在計算中間或末尾有0的多位數乘一位數時,我們要注意觀察數字的特點,利用0的特殊性質找到簡便的計算方法。中間有0的多位數乘一位數要注意0乘任何數都得0的特殊性,不能忘記進位或加進位數;末尾有0的多位數乘一位數要注意不能忘記在積的末尾添0。
不管多位數乘以一位數,還是多位數乘以多位數,只要在計算的過程中,你能夠認真仔細的算好每一步相信一定都會100%的准確。
㈢ 69×80用筆算乘法最簡便的方法是什麼
豎式運算過程69×80
解題思路:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
解題過程:
步驟一:0×69=0
步驟二:8×69=5520
根據以上計算結果相加為5520
驗算:5520÷80=69
(3)幼兒園數學筆算乘法簡便方法擴展閱讀(驗算結果):將被除數從高位起的每一位數進行除數運算,每次計算得到的商保留,余數加下一位數進行運算,依此順序將被除數所以位數運算完畢,得到的商按順序組合,余數為最後一次運算結果
解題過程:
步驟一:552÷80=6 余數為:72
步驟二:720÷80=9 余數為:0
根據以上計算步驟組合結果為69
存疑請追問,滿意請採納
㈣ 數學兩位數乘兩位數的筆算方法的關鍵是什麼
數學兩位數乘兩位數的筆算時,使學生掌握其筆算方法的關鍵有三點:一是( 列豎式),二是(運演算法則),三是(逢十要進位)。如果單是由教師講解,難免會有枯燥無味感.在教學時,我以引導學生自主學習、小組合作交流的學習方式,在課堂創設思考、交流空間幫助學生掌握知識.
對於如何筆算73×77,我給予學生充分的時間,讓其在獨立思考 ,最後一位是3和7. 3+7=10,那麼就可以利用7*(7+1)=7*8=56,3*7=21。那麼最後結果就是5621,也可以理解為十位數70*(70+10)=70*80=5600,5600+21等於5621
讓學生嘗試用自己的計算方法探索.給學生充分的時間,讓學生自主探索.對於學生多種不同的演算法,只要他們講得出理由,都應加以肯定.交流時,重點放在討論豎式的計算方法上,並讓學生說一說每一步計算的算理.有了引導,學生積極主動地投入到自己的探究中,學生通過認真的思考與合作交流得出了二位數乘兩位數筆算乘法的方法.