A. 簡便運算的技巧
簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。
主要用三種方法:加減湊整、分組湊整、提公因數法。
他們使用的都是數學計算中的拆分湊整思想。
主要步驟:
①遇見復雜的計算式時,先觀察有沒有可能湊整;
②運用四則運算湊成整十整百之後再進行簡便計算。
2/4
加減湊整法
1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百【例1】;
2、補上一個數,能夠與其他數湊整,最後再減去這個數
分組湊整法
在只有加減法的計算題中,將算式中的各項重新分下組湊整,主要採用兩個公式:G老師講奧數(微)。【例3】
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
減法的性質:a-b-c=a-(b+c)。
提公因數法
使用乘法分配律提取公因數,a x (b±c)=a x b±a x c;
如果沒有公因數,可以根據乘法結合律變化出公因數,詳見【例4】。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
做簡算,是享受。細觀察,找特點。
連續加,結對子。連續乘,找朋友。
連續減,減去和。連續除,除以積。
減去和,可連減。除以積,可連除。
乘和差,分別乘。積加減,莫慌張,
同因數,提出來,異因數,括弧放。
同級算,可交換。特殊數,巧拆分。
合理算,我能行。
1方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
例如:
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
例如:
2方法二:結合律法
(一)加括弧法
1.在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
2.在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
(二)去括弧法
1.在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加。)。
2.在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)。
3方法三:乘法分配律法
1.分配法
括弧里是加或減運算,與另一個數相乘,注意分配
例:8×(12.5+125)
=8×12.5+8×125
=100+1000
=1100
2.提取公因式
注意相同因數的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意構造,讓算式滿足乘法分配律的條件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
4方法四:湊整法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
5方法五:拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。
例:32×125×25
=(4×8)×125×25
=(4×25)×(8×125)
=100×1000
=100000
6方法六:巧變除為乘
除以一個數等於乘以這個數的倒數
7方法六:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
遇到裂項的計算題時,需注意:
1.連續性
2.等差性
計算方法:頭減尾,除公差。
8方法六:找朋友法
例題:
例1:
283+52+117+148
=(283+117)+(52+48)
(運用加法交換律和結合律)。
減號或除號後面加上或去掉括弧,後面數值的運算符號要改變。
例2:
657-263-257
=657-257-263
=400-263
(運用減法性質,相當加法交換律。「帶符號搬家」)
例3:
195-(95+24)
=195-95-24
=100-24
(運用減法性質)
例4:
150-(100-42)
=150-100+42
(去括弧時,括弧前面是減號,括弧裡面的運算符號要變成逆運算)
例5:
(0.75+125)x8
=0.75x8+125x8=6+1000
. (運用乘法分配律))
例6:
( 125-0.25)x8
=125x8-0.25x8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 運用除法性質)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相當乘法分配律)
例9:
375÷(125÷0.5)
=375÷125x0.5=3x0.5=1.5.
(運用除法性質)
例10:
4.2÷(0.6x0.35)
=4.2÷0.6÷0.35
=7÷0.35=20
(運用除法性質)
例11:
12x125x0.25x8
=(125x8)x(12x0.25)
=1000x3=3000.
(運用乘法交換律和結合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(運用加法性質和結合律)
B. 減法的簡便方法
簡便方法有如下:
方法 1. 兩位數加兩位數的進位加法: 口訣:加9要減1,加8要減2,加7要減3,加6要減4,加5要減5,加4要減6,加3要減7,加2要減8,加1要減9(註:口決中的加幾都是說個位上的數)。 例:26+38=64 解 :加8要減2,誰減2?26上的6減2。38里十位上的3要進4。(註:後一個兩位數上的十位怎麼進位,是1我進2,是2我進3,是3我進4,依次類推。那朝什麼地方進位呢,進在第一個兩位數上十位上。如本次是3我進4,就是第一個兩位數里的2+4=6。)這里的26+38=64就是6-2=4寫在個位上,是3進4加2就等於6寫在十位上。再如42+29=71。就用加9要減1這句口決,2-1=1,把1寫在個位上,是2我進3,4+3=7,把7寫在十位上即得71。本辦法學會了百試百靈,比計算器還快。兩位數加兩位數不進位加的就直接寫得數就行,如25+34=59,個位加個位寫在等號後的個位上5+4=9,十位加十位寫在十位上即可2+3=5,即59。不必列豎式計算。
方法2.兩位數減兩位數的退位減法。口決: 口訣:減9要加1,減8要加2,減7要加3,減 6要加4,減 5要加5,減4要加6,減 3要加7,減 2要加8,減 1要加9。(註:
口決中的減幾都是說減個位上的數)。例:73-46=27,解:減6要加4,誰加4?3加4等於7寫在個位上,減數的十位是4我退5,誰退5?7退5,即27。(註:如何退位?減數的十位是1你退2,是2你退3,是3你退4,依次類推,但必須是個位減個位不夠減的情況才能這樣退,夠減就直接個位減個位,十位減十位直接定出得數即可。)
以上兩種方法是我利用了一年級教材中的湊十法演變而來的。它們的口決大體一致,只需記住了其中的一種,另一種方法即可融會貫通。
C. 三年級的簡便運算
加減法中的簡便計算
加減法的簡便運算,主要思想就是湊整,和一些特定的方法,我們來看下面的例題:
(1)187+99
可以把99看成100,多加了1再減去1,就是:
187+100-1=287-1=286
(2)265-198
同理可以把198看成200,多減了2再加2,就是:
265-200+2=65+2=67
(3)207-18-32
先減去18,再減去32,就是一共減去了(18+32),方法是:
207-(18+32)=207-50=157
(4)13+15+17
此題既可以根據湊整的思想先算13+17,再加15,也可以根據移多補少的思想,用"中間數×個數"來計算,方法是:
13+17+15=30+15=45
或15×3=45
(5)100+101—102+103-104
此題看似很復雜,其實仔細觀察可發現:從第二個數開始,兩個一組是有規律的,如「加上101,再減去102,相當於減去了1」,所以是100-1-1=98;我們也可以這樣去寫思考過程:
原式=100-(102-101)-(104-103)
=100-1-1
=98
又如:
74-47=27,方法:(7-4)×9=27
83-38=45,方法:(8-3)×9=45
92-29=63,方法:(9-2)×9=63
又如:
936-639=297
方法:(9-6)×9=27,在27的中間加一個9,是297
723-327=396
方法:(7-3)×9=36,在36中間加一個9,是396
D. 減法的簡便方法
如果是連減的話,可以觀察看後面的減數可不可以相加成10或者10的倍數,然後在用被減數減去它們的和