Ⅰ 6000除以125的簡便方法四年級視頻
簡便計算過程如下
6000÷125
=(6×1000)÷125
=6×1000÷125
=6×(1000÷125)
=6×8
=48
望採納
Ⅱ 小學四年級數學簡便計算方法技巧
小學四年級數學簡便計算例子演示19×24+19×46
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
19×24+19×46
=19×(24+46)
=19×70
=1330
(2)四年級簡便方法應該怎麼算視頻擴展閱讀→豎式計算-計算結果:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
解題過程:
步驟一:9×70=630
步驟二:1×70=700
根據以上計算結果相加為1330
存疑請追問,滿意請採納
Ⅲ 用簡便方法計算四年級
用簡便方法計算如下:
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×56、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。
O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
(3)四年級簡便方法應該怎麼算視頻擴展閱讀:
小學數學簡便運算的6個技巧:
1、運用加法結合律進行簡算
(a+b)+c=a+(b+c)
例1、5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=10+10
=20
例2、37.24+23.79-17.24
=37.24-17.24+23.79
=20+23.79
=43.79
2、運用乘法結合律進行簡算:這種題型往往含特殊數字之間相乘
(a×b)×c=a×(b×c)
例3、4×3.78×0.25
=4×0.25×3.78
=1×3.78
=3.78
例4、125×246×0.8
=125×0.8×246
=100×246
=24600
3、利用乘法分配律進行簡算:(做這種題,一定不要急著去算,先要分析各數字之間的特殊關系。也就是先要仔細觀察,找到做題的竅門。)
(a+b)×c=a×c+b×c
(a-b)×c=a×c-b×c
例5、(2.5+12.5)×40
=2.5×40+12.5×40
=100+500
=600
例6、3.68×4.79+6.32×4.79
=(3.68+6.32)×4.79
=10×4.79
=47.9
例7.26.86×25.66-16.86×25.66
=(26.86-16.86)×25.66
=10×25.66
=256.6
4、利用加減乘除把數拆分後再利用乘法分配律進行簡算:
例8、34×9.9
=34×(10-0.1)
=34×10-34×0.1
=340-3.4
=336.6
例9、57×101
=57×(100+1)
=57×100+57×1
=5757
例10、7.8×1.1
=7.8×(1+0.1)
=7.8×1+7.8×0.1
=7.8+0.78
=8.58
例11、25×32
=25×4×8
=100×8
=800
5、連減與連除
a-b-c=a-(b+c)a÷b÷c=a÷(b×c)
例12、56.5-3.7-6.3
=56.5-(3.7+6.3)
=56.5-10
=46.5
例13、32.6÷0.4÷2.5
=32.6÷(0.4×2.5)
=32.6÷1
=32.6
6、需要變形才能進行的簡便運算:做這一類題,要先觀察,找出規律,然後變形後進行簡算。
例14、86.7×0.356+1.33×3.56
=8.67×3.56+1.33×3.56
=(8.56+1.33)×3.56
=10×3.56
=35.6
Ⅳ 四年級下冊數學怎麼簡便怎麼算
小學四年級數學簡便計算方法技巧如下:
定律:
乘法分配律:
簡便計算中最常用的方法是乘法分配律。
乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘孝銷敗。如將上式中的+變為x,運用乘法結合律也可簡便計算
乘法結合律:
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。
它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
Ⅳ 簡算怎麼算四年級
簡算怎麼算
簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。
主要用三種方法:加減湊整、分組湊整、提公因數法。
他們使用的都是數學計算中的拆分湊整思想。
主要步驟:
①遇見復雜的計算式時,先觀察有沒有可能湊整;
②運用四則運算湊成整十整百之後再進行簡便計算。
加減湊整法
1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百;
2、補上一個數,能夠與其他數湊整,最後再減去這個數。
分組湊整法
在只有加減法的計算題中,將算式中的各項重新分下組湊整,主要採用兩個公式:G老師講奧數(微)。
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
減法的性質:a-b-c=a-(b+c)。
提公因數法
使用乘法分配律提取公因數,a x (b±c)=a x b±a x c;
如果沒有公因數,可以根據乘法結合律變化出公因數。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
Ⅵ 四年級簡便運算的技巧和方法是什麼
方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,可以「帶符號搬家」。例如:a+b+c=a+c+b、a×b×c=a×c×b等等。
方法二:去括弧法
在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加)。
方法三:乘法分配律法
分配法:括弧里是加或減運算,與另一個數相乘,注意分配;提取公因式:注意相同因數的提取;注意構造,讓算式滿足乘法分配律的條件。
方法四:拆分法
拆分法屬於為了方便計算把一個數拆成幾個數,這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小。
方法五:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
Ⅶ 四年級簡便運算的技巧和方法是什麼
四年級簡便運算的技巧和方法是需要記住公式。按照公式進行計算就是竅門。
方法:
加法交換律 a+b=b+a。
加法結合律 (a+b)+c=a+(b+c)。
乘法交換律 a×b=b×a也可以寫成:a·b=b·a還可以寫成:ab=ba。
乘法結合律 (a×b)×c=a×(b×c)也可以寫成:(a·b)·c=a·(b·c)還可以寫成:(ab)c=a(bc)。
乘法分配律 (a+b)×c=a×c+b×c也可以寫成:(a+b)·c=a·c+b·c還可以寫成:(a+b)c=ac+bc。
乘法交換律:兩個數相乘,交換因數的位置,積不變。ab=ba。
乘法結合律:三個數相乘,可以先乘前兩個數,或者先乘後兩個數,積不變。 (ab)c=a(bc)。
分配律:分配律是乘法運算的一種簡便運算,可用於分數、小數中。
主要公式為(a+b)c=ac+bc。兩個數的和與一個數相乘,可以先把它們分別與這個數相乘,再相加,積不變,這叫做乘法分配律。