72*32+14*64
=36*2*32+14*64
=36*64+14*64
=64*(36+14)
=64*50
=3200
㈡ 簡便計算方法
方 法
接根據運算定義和性質,把算式中能湊成整十、整百、整千……的數先算,使計算簡便。
26+47+74=(26+74)+47=100+47=147,
25×89×4=25×4×89=100×89=8900
對接近整百、整千的數,可以不上一個數,使它成為整百、整千的數,使運算簡便。
2837-398=2837-(400-2)=2837-400+2=2437+2=2439
把已知數適當分解,然後應用運算性質,使計算簡便。
192 ÷16=192÷(4×4)=192÷4÷4=48÷4=12
3762÷18=3762÷(2×9)=3762÷2÷9=
1881÷9=209
一個數乘以(或除以)5、25、125,可以轉化為10÷2、100÷4、1000÷8來代替,從而使計算簡便。
488×125=488×(1000 ÷8)=488÷8×1000=61×1000=61000
求一些大小不等而又比較接近的幾個數的和,可以從中選定一個數作為基準數,然後把各個數與基準數的差積累起來,再加上基準數與項數之積。
46+36+42+45+38+43+38=(40+6)+(40-4)+(40+2)+(40+5)+(40-2)+(40+3)+(40-2)=40×7+(6-4+2+5-2+3-2)=280+8=288
求幾個積(或商)的和(或差),如果每個積(或商)中有一個因數(或除數)相同,可反用乘法分配律來簡便計算。
13×9+8×9=(13+8)×9=21×9=189
33÷6-9÷6=(33—9)÷6=24÷6=4
根據差和商的不變性,把被減數和減數同時增加或減小同一個數,或把被除數和除數同時擴大或縮小相同的倍數,進行簡便計算。
462—87=(462+13)—(87+13)=475-100=375
425÷25=(425×4)÷(25×4)=1700÷100=17
㈢ 簡便運算的技巧是什麼
簡便運算方法大全
一、什麼是簡便運算
「簡便運算」是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算。
二、簡便運算大全
(一)、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
說明:適用於加法交換律和乘法交換律。
1/4
(二)、結合律
(1)加括弧法
①當一個計算題只有加減運算又沒有括弧時,我們可以在加號後面直接添括弧,括到括弧里的運算原來是加還是加,是減還是減。但是在減號後面添括弧時,括到括弧里的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②當一個計算題只有乘除運算又沒有括弧時,我們可以在乘號後面直接添括弧,括到括弧里的運算,原來是乘還是乘,是除還是除。但是在除號後面添括弧時,括到括弧里的運算,原來是乘,現在就要
2/4
變為除;原來是除,現在就要變為乘。(即在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括弧法
①當一個計算題只有加減運算又有括弧時,我們可以將加號後面的括弧直接去掉,原來是加現在還是加,是減還是減。但是將減號後面的括弧去掉時,原來括弧里的加,現在要變為減;原來是減,現在就要變為加。(現在沒有括弧了,可以帶符號搬家了哈) (註:去括弧是添加括弧的逆運算)
②當一個計算題只有乘除運算又有括弧時,我們可以將乘號後面的括弧直接去掉,原來是乘還是乘,是除還是除。但是將除號後面的括弧去掉時,原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。(現在沒有括弧了,可以帶符號搬家了哈) (註:去掉括弧是添加括弧的逆運算)
三、乘法分配律
①分配法 括弧里是加或減運算,與另一個數相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式 注意相同因數的提取。
例:35×78+22×35=35×(78+22)=35×100=3500這里35是相同因數。
③注意構造,讓算式滿足乘法分配律的條件。
3