導航:首頁 > 知識科普 > 二次函數配方法怎麼來的

二次函數配方法怎麼來的

發布時間:2023-07-06 19:15:01

㈠ 到底什麼是配方法,一元二次方程用配方法怎樣解

配方法是指將一個式子(包括有理式和超越式)或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和,這種方法稱之為配方法。這種方法常常被用到恆等變形中,以挖掘題目中的隱含條件,是解題的有力手段之一。

用配方法解一元二次方程的一般步驟:

1、把原方程化為的形式;

2、將常數項移到方程的右邊;方程兩邊同時除以二次項的系數,將二次項系數化為1;

3、方程兩邊同時加上一次項系數一半的平方;

4、再把方程左邊配成一個完全平方式,右邊化為一個常數;

5、若方程右邊是非負數,則兩邊直接開平方,求出方程的解;若右邊是一個負數,則判定此方程無實數解。

例: 解方程:3

(變形:方程左邊分解因式,右邊合並同類項;)

x+4/3=± 5/3(開方:根據平方根的意義,方程兩邊開平方;)

x+4/3=5/3 或 x+4/3=-5/3( 求解:解一元一次方程;)

所以x1=1/3, x2=-3 ( 定解:寫出原方程的解)

(1)二次函數配方法怎麼來的擴展閱讀

1、配方法解一元二次方程的口訣:一除二移三配四開方。

2、配方法關鍵的一步是「配方」,即在方程兩邊都加上一次項系數一半的平方。

3、配方法的理論依據是完全平方公式。

配方法的應用

1、用於比較大小

在比較大小中的應用,通過作差法最後拆項或添項、配成完全平方,使此差大於零(或小於零)而比較出大小。

2、用於求待定字母的值

配方法在求值中的應用,將原等式右邊變為0,左邊配成完全平方式後,再運用非負數的性質求出待定字母的取值。

3、用於求最值

「配方法」在求最大(小)值時的應用,將原式化成一個完全平方式後可求出最值。

4、用於證明

「配方法」在代數證明中有著廣泛的應用,我們學習二次函數後還會知道「配方法」在二次函數中也有著廣泛的應用.

㈡ 二次函數配方步驟

1.轉化: 將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)化為一般形式 2.移項: 常數項移到等式右邊 3.系數化1: 二次項系數化為1 4.配方: 等號左右兩邊同時加上一次項系數一半的平方 5.求解: 用直接開平方法求解 整理 (即可得到原方程的根) 代數式表示方法:注(^2是平方的意思.) ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n) 例:解方程2x^2+4=6x 1. 2x^2-6x+4=0 2. x^2-3x+2=0 3. x^2-3x=-2 4. x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同時-2也要加上3一半的平方讓等式兩邊相等) 5. (x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0) 6. x-1.5=±0.5 7. x1=2 x2=1 (一元二次方程通常有兩個解,X1 X2)
編輯本段二次函數配方法技巧
y=ax&sup要的一項,往往在解決方程,不等式,函數中需用,下面詳細說明: 首先,明確的是配方法就是將關於兩個數(或代數式,但這兩一定是平方式),寫成(a+b)平方的形式或(a-b)平方的形式: 將(a+b)平方的展開得 (a+b)^2=a^2+2ab+b^2 所以要配成(a+b)平方的形式就必須要有a^2,2ab,b^2 則選定你要配的對象後(就是a^2和b^2,這就是核心,一定要有這兩個對象,否則無法使用配方公式),就進行添加和去增,例如: 原式為a^2+ b^2 解: a^2+ b^2 = a^2+ b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab = (a+b)^2-2ab 再例: 原式為a^2+ 2b^2 解: a^2+2b^2 = a^2+ b^2 + b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab+ b^2 = (a+b)^2-2ab+ b^2 這就是配方法了, 附註:a或b前若有系數,則看成a或b的一部分, 例如:4a^2看成(2a)^2 9b^2看成(a^29b^2)

㈢ 二次函數配方法解法

配方法的思想如下:首先把左邊x二次項和一次項配成一個完全平方項(perfect square),數字移到右邊;然後左右兩邊同時開根號(take square root),求解出x。

對一個二次函數配方,會有以下三種情況:

1、二次項系數為1的方程

2、二次項系數不為1的方程

3、配方成(ax+b)的完全平方式

(3)二次函數配方法怎麼來的擴展閱讀

解方程:2x²+6x+6=4

分析:原方程可整理為:x²+3x+3=2,通過配方可得(x+1.5)²=1.25通過開方即可求解。

解:2x²+6x+6=4

<=>(x+1.5)²=1.25

x+1.5=1.25的平方根

在一元二次方程中,配方法其實就是把一元二次方程移項之後,在等號兩邊都加上一次項系數絕對值一半的平方。

㈣ 二次函數配方法的過程

二次函數配方法的過程是把二次項系數提出來,在括弧內,加上一次項系數一半的平方,同時減去,以保證值不變。這時就能找到完全平方了。然後再把二次項系數乘進來即可。
二次函數的基本表示形式為y=ax²+bx+c(a≠0)。二次函數最高次必須為二次,二次函數的圖像是一條對稱軸與y軸平行或重合於y軸的拋物線。
二次函數表達式為y=ax²+bx+c(且a≠0),它的定義是一個二次多項式或單項式。
如果令y值等於零,則可得一個二次方程。該方程的解稱為方程的根或函數的零點。

㈤ 數學里二次函數配方怎麼配

步驟1.把二次項系數提出來。
2.在括弧內,加上一次項系數一半的平方,同時減去,以保證值不變。
3.這時就能找到完全平方了。然後再把二次項系數乘進來即可。
舉個例子:
y=2x²-12x+7
=2(x²-6x+3.5) ——提出二次項系數「2」
=2(x²-6x+9+3.5-9) ——-6的一半的平方是9,加上9再在後面減掉
=2[(x-3)²-5.5] ——x²-6x+9是完全平方,等於(x-3)²
=2(x-3)²-11 ——二次項系數再乘進來
所以該二次函數的頂點坐標為(3,-11)。

㈥ 二次函數配方法 關於二次函數配方法

1、首先,明確的是配方法就是將關於兩個數(或代數式,但這兩個一定是平方式),寫成(a+b)^2的形式或(a-b)^2的形式。

2、將(a+b)^2的展開,得 (a+b)^2=a^2+2ab+b^2 。

3、故需配成(a+b)^2的形式,就必須要有a^2,2ab,b^2 ,則選定要進行配方的對象後(就是a^2和b^2,這就是核心,一定要有這兩個對象,否則無法使用配方公式),即進行添加和去增。

4、例題:原式為a^2+ b^2 解: a^2+ b^2 = a^2+ b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab = (a+b)^2-2ab 再例: 原式為a^2+ 2b^2 解: a^2+2b^2 = a^2+ b^2 + b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab+ b^2 = (a+b)^2-2ab+ b^2 這就是配方法了。

5、附註:a或b前若有系數,則看成a或b的一部分, 例如:4a^2看成(2a)^2,9b^2看成(3b)^2 設二次函數解析式是y=ax2+bx+c。

㈦ 誰能告訴我二次函數配方法的過程

點擊圖片就可以看清楚

二次函數配方要注意的主要有兩點

(1)要把二次項x&sup2;前面的系數化為1

(2)要加上一次項x的系數一半的平方

圖片中就體現了這兩點

㈧ 二次函數如何配方

二次函數一般式化為頂點式的公式是:y=ax²+bx+c,化為頂點式的公式是:y=a(x+b/2a)²+(4ac-b²)/4a。

配方過程如下:

y=ax²+bx+c

=a(x²+bx/a)+c

=a(x²+bx/a+b²/4a²-b²/4a²)+c

=a(x+b/2a)²-b²/4a+c

=a(x+b/2a)²+(4ac-b²)/4a

對於一般二次函數 y=ax^2+bx+c,其頂點坐標為 (-b/2a,(4ac-b²)/4a)。

二次函數簡介:

二次函數(quadratic function)的基本表示形式為y=ax²+bx+c(a≠0)。二次函數最高次必須為二次,二次函數的圖像是一條對稱軸與y軸平行或重合於y軸的拋物線。

二次函數表達式為y=ax²+bx+c(且a≠0),它的定義是一個二次多項式(或單項式)。

閱讀全文

與二次函數配方法怎麼來的相關的資料

熱點內容
圓心角周長計算方法 瀏覽:651
特級化學教師教學方法 瀏覽:621
雷諾氏病中醫治療方法 瀏覽:124
網上賺錢的方法都有哪些 瀏覽:889
手機小型電流表的認識和使用方法 瀏覽:817
客廳收納最好方法如何 瀏覽:659
草龜怎麼煮的正確方法 瀏覽:318
當歸祛斑怎樣使用方法 瀏覽:817
除油溶液分析方法 瀏覽:759
用什麼方法彈手機電子琴 瀏覽:890
大班聲母c拼音教學方法 瀏覽:723
汽車質量鑒別有哪些方法 瀏覽:146
電腦開機密碼從哪裡設置方法 瀏覽:934
餐墊套裝鉤針編織方法視頻 瀏覽:156
火影忍者手游快速得忍者方法 瀏覽:953
排卵監測方法有哪些 瀏覽:747
採用專一抗體檢測的方法 瀏覽:794
狗偽狂犬病的治療方法 瀏覽:189
兒童的燒傷面積計算方法 瀏覽:334
滿堂腳手架扣件計算方法 瀏覽:698