A. 加減乘除簡便運演算法則定律
在數學中,有關加減乘除簡演算法則定律的計算方法及技巧如下,可以參考一下:
加法交換律:a+b+c=a+c+b。
加法結合律:a+b+c=a+(b+c)。
減法交換侓:a-b-c=a-c-b
減法結合侓:a-b-c=a-(b+c)。
乘法交換律:a×b=b×a。
乘法結合律(a×b)×c=a×(b×c)。
乘法分配律:(a+b)×c=a×c+b×c。
加減乘除運演算法則定律
乘法分配律
兩個數的和(差)同一個數相乘,可以先把兩個加數(減數)分別同這個數相乘,再把兩個積相加(減),積不變。
字母表達是:a×(b+c)=a×b+a×c
【a×(b-c)=a×b-a×c】
或:a×b+a×c=a×(b+c)
【a×b-a×c=a×(b-c)】
加減計演算法則
1.整數加、減計演算法則:
1)要把相同數位對齊,再把相同計數單位上的數相加或相減;
2)哪一位滿十就向前一位進。
2.小數加、減法的計演算法則:
1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),
2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。
(得數的小數部分末尾有0,一般要把0去掉。)
3.分數加、減計演算法則:
1)分母相同時,只把分子相加、減,分母不變;
2)分母不相同時,要先通分成同分母分數再相加、減。
B. 加減乘除法速算技巧
加減乘除法速算技巧的操作,這個可以根據一定的運算定律來進行計算的,因為運用到比較簡便的運算定律,可以快速並且直接地計算出結果
C. 加減乘除的簡便運算方法
加減乘除的簡便計算方法:
復習重點:
1、小數加、減的計算方法及應用加法運算律進行簡便計算。
2、小數乘(除)以整數的計算方法、小數點位置移動引起小數大小變化的規律
3、小數乘(除)以小數的計算方法、求積(商)的近似值、應用乘法運算律進行簡便計算。
復習難點:
1、應用加法運算律進行簡便計算。
2、
小數點位置移動引起小數大小變化的規律。
3、
求積(商)的近似值和應用乘法運算律進行簡便計算
教學過程:
一:知識梳理:
小數四則混合運算和簡便計算。
(1)小數加減法要相同數位上的數對齊。小數乘法末尾對齊。
(2)小數乘法:先按整數乘法的法則算出積,再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。積的末尾有0要化簡。
(3)小數除以整數:除到哪一位,商就寫在哪一位上,商的小數點和被除數的小數點對齊,商的整數部分不夠商1,個位上就寫0,如果除到被除數的末尾還有餘數,添0再繼續除。小數除以小數,先把除數變成整數,除數的小數點右移幾位,被除數的小數點也向右移動相同的位數,再按除數是整數的小數除法計算。
(4)循環小數、近似數(四捨五入法,進一法,去尾法)。
(5)簡便計算:運算律的運用和一些特殊的運算方法,(去括弧的時候如果括弧前面是減號和除號要注意變符號,例如:
a÷(b×c)=a÷b÷c,a-b-c=a-(b+c),a-(b-c)=a-b+c)
D. 加減乘除的計算方法
先乘除,後加減,有括弧的先算括弧里的.
整數加、減計演算法則:
1)要把相同數位對齊,再把相同計數單位上的數相加或相減;
2)哪一位滿十就向前一位進。
2、小數加、減法的計演算法則:
1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),
2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。
(得數的小數部分末尾有0,一般要把0去掉。)
3、分數加、減計演算法則:
1)分母相同時,只把分子相加、減,分母不變;
2)分母不相同時,要先通分成同分母分數再相加、減。
4、整數乘法法則:
1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;
2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
5、小數乘法法則:
1)按整數乘法的法則算出積;
2)再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。
3)得數的小數部分末尾有0,一般要把0去掉。
6、分數乘法法則:把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。
7、整數的除法法則
1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;
2)除到被除數的哪一位,就在那一位上面寫上商;
3)每次除後餘下的數必須比除數小。
8、除數是整數的小數除法法則:
1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;
2)如果除到被除數的末尾仍有餘數,就在余數後面補零,再繼續除。
9、除數是小數的小數除法法則:
1)先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;
2)然後按照除數是整數的小數除法來除
10、分數的除法法則:
1)用被除數的分子與除數的分母相乘作為分子;
2)用被除數的分母與除數的分子相乘作為分母
E. 連除的簡便演算法和連減的簡便演算法有相似的地方嗎
連除的簡便演算法和連減的簡便演算法有相似的地方。
相似的地方是一個數連續減去幾個數,等於這個數減去這幾個數的和。一個數連續除以幾個數,等於這個數除以這幾個數的積。
除此之外,使用括弧後,裡面的符號都要變化的。
例如:
3÷4÷5=3÷(4×5)
3-4-5=3-(4+5)
用字母表示就是a÷b÷c=a÷(bⅩc)連減的簡便演算法是一個數連續減去兩個數就等於用這個數減去這兩個數的和,用字母表示就是a—b—c=a—(b+c)。
除法的運算性質:
1. 被除數擴大(縮小)n倍,除數不變,商也相應的擴大(縮小)n倍。
2. 除數擴大(縮小)n倍,被除數不變,商相應的縮小(擴大)n倍。
3. 除法的性質:被除數連續除以兩個除數,等於除以這兩個除數之積。有時可以根據除法的性質來進行簡便運算。
例如:300÷25÷4=300÷(25×4)=300÷100=3。
F. 連除連減的簡便運算
連除和連減的簡便運算可以利用,除法的性質和減法的性質,連續除以兩個數,就等於除以這兩個數的積。連續減去兩個數,就等於減去這兩個數的和。
G. 運算律用簡便方法技巧
一、加法:
378+527+23(加法結合律的正運算,讓後兩個數相加湊成整百數)
576+(24+187)(加法運算率的逆運算,讓前兩個數相加湊成整百數)
167+289+33(加法交換律,讓後兩個數交換後再運用結合律與第一個數相加湊成整百數)
567+(187+24)(先去括弧,再交換,最後結合)
58+392+42+61(先交換,再結合)
546+201(先把201分成200+1的和,再利用加法結合律)
546+199(先把199分成200-1的差,再去括弧)
二、減法
559-145-255(減法的性質,減去兩個數的和)
487-(187+126) (減法性質的逆運算,連續減去這兩個數,487和187尾數相同,先減去187)
442-103-142(442和142尾數相同,要先減去142,所以兩個減數交換位置)
8755-(2187+755)先用減法性質的逆運算,再交換。
546-201先把201拆分成(200+1),再用546-(200+1),利用減法的性質等於546-200-1。
546-199先把199拆分成(200-1),再用546-(200-1),利用括弧前面是減號去掉括弧要變號,就等於546-200+1。
綜合:
487-(187-126)利用括弧前面是減號去掉括弧要變號的規律,等於487-187+126。
487+126-187利用交換律,後兩數交換,交換時要帶著符號搬家。
547+358+342-347先交換再結合,交換時要帶著符號搬家兩兩組合。
85-17+15-33先交換再結合,交換時要帶著符號搬家兩兩組合。
三、乘法
457×2×5利用乘法結合律的正運算,讓後兩個數相乘湊成整百數。
125×(80×7)利用乘法結合律的逆運算,讓前兩個數相乘湊成整百數。
125×7×80利用乘法交換律,先交換再125和80相乘湊成整千數。
125×(30×8)利用乘法結合律的逆運算去掉括弧,再利用交換律讓125和8相乘湊成整千數。
125×(80+8)利用乘法分配律,讓125分別與80和8相乘再相加。
125×(80-8)利用乘法分配律,讓125分別與80和8相乘再相減。
38×62+38×38利用乘法分配律的逆運算,先把共同的因數38提取出來,再把剩下的62和38相加。
65×99+65先把65寫成65×1,再利用乘法分配律的逆運算,把共同的因數65提取出來,再把剩下的99和1相加。
65×101-65先把65寫成65×1,再利用乘法分配律的逆運算,把共同的因數65提取出來,再把剩下的101和1相減。
38×101先把101拆分成(100+1),再利用乘法分配律,讓38分別與100和1相乘再相加。
38×99先把99拆分成(100-1),再利用乘法分配律,讓38分別與100和1相乘再相減。
125×32×25先把32拆分成(4×8),再利用乘法結合律,讓125與8相乘25和4相乘,再把兩積相乘。
125×88先把88拆分成(80+8),再利用乘法分配律,讓125分別與80和8相乘再相加。
還可以先把88拆分成(11×8),再利用乘法結合律,讓125與8相乘,再把積與11相乘。
綜合:
79×25+22×25-25利用乘法分配律的逆運算,先把共同的因數25提取出來,再把剩下的79、22和25相加減。
67×21+18×21+15×21 利用乘法分配律的逆運算,先把共同的因數21提取出來,再把剩下的67、18和15相加。
125×15×8×4利用乘法結合律,讓125與8相乘15和4相乘,再把兩積相乘。
四、除法
3500÷25÷4利用除法的性質,除以兩個數的積。
3500÷(35×25)利用除法性質的逆運算,除以兩個數的積等於連續除以這兩個數。
3500÷(25×35)先利用除法性質的逆運算,連續除以這兩個數,再把兩個除數交換。
800÷16先把16拆分成(8×2),再利用除法的性質,除以兩個數的積等於連續除以這兩個數。
3500÷25÷35把兩個除數交換位置再除。
綜合:
150×24÷50把後兩數交換,交換時要帶著符號搬家。