1. 生物如何變異
生物變異 -網路
在豐富多彩的生物界中,蘊含著形形色色的變異現象。在這些變異現象中,有的僅僅是由於環境因素的影響造成的,並沒有引起生物體內的遺傳物質的變化,因而不能夠遺傳下去,屬於不遺傳的變異。有的變異現象是由於生殖細胞內的遺傳物質的改變引起的,因而能夠遺傳給後代,屬於可遺傳的變異。可遺傳的變異有三種來源:基因突變,基因重組,染色體變異。
基因突變:
正常人的紅細胞是圓餅狀的,鐮刀型細胞貧血症患者的紅細胞卻是彎曲的鐮刀狀的。這樣的紅細胞容易破裂,使人患溶性貧血,嚴重時會導致死亡,分子生物學的研究表明,鐮刀型細胞貧血症是由基因突變引起的一種遺傳病。
基因突變的概念 人們在對鐮刀型細胞貧血症患者的血紅蛋白分子進行檢查時發現,患者血紅蛋白分子的多肽鏈上,一個谷氨酸被纈氨酸替換。為什麼發生氨基酸分子結構的改變呢?經過研究發現,這是由於控制合成血紅蛋白分子的DNA的鹼基序列發生了改變,這種改變最終導致了鐮刀型細胞貧血症的產生。
除鹼基的替換以外,控制合成血紅蛋白分子的DNA的鹼基序列發生鹼基的增添或缺失,有時也會導致血紅蛋白病的產生。由於DNA分子中發生鹼基對增添、缺失或改變,而引起的基因結構的改變,就叫做基因突變。
基因突變是染色體的某一個位點基因的改變。基因突變使一個基因變成它的等位基因,並且通常會引起一定的表現型變化。例如,小麥從高稈變成矮稈,普通羊群中出現了短腿的安康羊等,都是基因突變的結果。
基因突變在生物進化中具有重要意義。它是生物變異的根本來源,為生物進化提供了最初的原材料。
引起基因突變的因素很多,可以歸納為三類:一類是物理因素,如X射線、激光等;另一類是化學因素,是指能夠與DNA分子起作用而改變DNA分子性質的物質,如亞硝酸、鹼基類似物等;第三類是生物因素,包括病毒和某些細菌等。
基因突變的特點 基因突變作為生物變異的一個重要來源,它具有以下主要特點。
第一,基因突變在生物界中是普遍存在的。無論是低等生物,還是高等的動植物以及人,都可能發生基因突變。基因突變在自然界的特種中廣泛存在。例如,棉花的短果枝,水稻的矮稈、糯性,果蠅的白眼、殘翅,家鴿羽毛的灰紅色,以及人的色盲、糖尿病、白化病等遺傳病,都是突變性狀。自然條件下發生的基因突變叫做自然突變,人為條件下誘發產生的基因突變叫做誘發突變。
第二,基因突變是隨機發生的。它可以發生在生物個體發育的任何時期。一般來說,在生物個體發育的過程中,基因突變發生的時期越遲,生物體表現突變的部分就越少。例如,植物的葉芽如果在發育的早期發生基因突變,那麼由這個葉芽長成的枝條,上面著生的葉、花和果實都有可能與其他枝條不同。如果基因突變發生在花芽分化時,那麼,將來可能只在一朵花或一個花序上表現出變異。
基因突變可以發生在細胞中,也可以發生在生殖細胞中。發生在生殖細胞中的突變,可以通過受精作用直接傳遞給後代。發生在體細胞中的突變,一般是不能傳遞給後代的。
第三,在自然狀態下,對一種生物來說,基因突變的頻率是很低的。據估計,在高等生物中,約10五次方到10的八次方個生殖細胞中,才會有1個生殖細胞發生基因突變,突變率是10的負五次方到10的負八次方。
第四,在多數基因突變對生物體是有害的。由於任何一物都是長期進化過程的產物,它們與環境條件已經取得了高度的協調。如果發生基因突變,就有可能破壞這種協調關系。因此,基因突變對於生物的生存往往是有害的。例如,絕大多數的人類遺傳病,就是由基因突變造成的,這些病對人類健康構成了嚴重威脅。又如,植物中常見的白化苗,也是基因突變形成的。這種苗由於缺乏葉綠素,不能進行光合作用製造有機物,最終導致死亡。但是,也有少數基因突變是有利的。例如,植物的抗病性突變、耐旱性突變、微生物的抗葯性突變等,都是有利於生物生存的。
第五,基因突變是不定向的。一個基因可以向不同的方向發生突變,產生一個以上的等位基因。例如,控制小鼠毛色的灰色基因可以突變成黃色基因,也可以突變成黑色基因。
人工誘變在育種上的應用 人工誘變是指利用物理因素(如X射線、γ射線、紫外線、激光等)或化學因素(如亞硝酸、硫酸二乙酯等)來處理生物,使生物發生基因突變。用這種方法可以提高突變率,創造人類需要的變異類型,從中選擇、培育出優良的生物品種。
基因重組:
基因重組是指在生物體進行有性生殖的過程中,控制不同性狀的基因的重新組合。基因的自由組合定律告訴我們,在生物體通過減數分裂形成配子時,隨著非同源染色體體的自由組合,非等位基因也自由組合,這樣,由雌雄配子結合形成是一種類型的基因重組。在減數分裂形成四分體時,由於同源染色體的非姐妹染色單體之間常常發生局部交換,這些染色體單體上的基因組合,是另一種類型的基因重組。
基因重組是通過有性生殖過程實現的。在有性生殖過程中,由於父本和母本的遺傳特質基礎不同,當二者雜交時,基因重新組合,就能使子代產生變異,通過這種來源產生的變異是非常豐富的。父本與母本自身的雜合性越高,二者的遺傳物質基礎相差越大,基因重組產生變異的可能性也越大。以豌豆為例,當具有10對相對性狀(控制這10對相對性狀的等位基因分別位於10對同源染色體上)的親本進雜交時,如果只考慮基因的自由組合所引起的基因重組,F2可能出現的表現型就有1024種(即2的十次方)。在生物體內,尤其是在高等動植物體內,控制性狀的基因的數目是非常巨大,因此,通過有性生殖產生的雜交後代的表現型種類是很多的。如果把同源染色體的非姐妹染色單體交換引起的基因重組也考慮在內,那麼生物通過有性生殖產生的變異就更多了。
由此可見,通過有性生殖過程實現的基因重組,為生物變異提供了極其豐富的來源。這是形成生物多樣性的重要原因之一,對於生物進化具有十分重要的意義。
染色體變異:
基因突變是染色體的某一個位點上基因的改變,這種改變在光學顯微鏡下是看不見的。而染色體變異是可以用顯微鏡直接觀察到的比較明顯的染色體變化,如染色體結構的改變、染色體數目的增減等。
染色體結構的變異:
人類的許多遺傳病是由染色體結構改變引起的。例如,貓叫綜合征是人的第5號染色體部分缺失引起的遺傳病,因為患病兒童哭聲輕,音調高,很像貓叫而得名。貓叫綜合征患者的兩眼距離較遠,耳位低下,生長發育遲緩,而且存在嚴重的智力障礙。
在自然條件或人為因素的影響下,染色體發生的結構變異主要有4種:1.染色體中某一片段的缺失;2.染色體增加了某一片段;3.染色體某一片段的位置顛倒了180度;4.染色體的某一片段移接到另一條非同源染色體上。
上述染色體結構的改變,都會使排列在染色體上的基因的數目和排列順序發生改變,從而導致性狀的變異。大多數染色體結構變異對生物體是不利的,有的甚至會導致物體死亡。
染色體數目的變異:
一般來說,每一種生物的染色體數目都是穩定的,但是,在某些特定的環境條件下,生物體的染色體數目會發生改變,從而產生可遺傳的變異。染色體數目的變異可以分為兩類:一類是細胞內的個別染色體增加或減少,另一類是細胞內的染色體數目以染色體組的形式成倍地增加或減少。
染色體組 在大多數生物的體細胞中,染色體都是兩兩成對的。例如,果蠅有4對共8條染色體,這4對染色體可以分成兩組,每一組中包括3條常染色體和1條性染色體。就雄果蠅來說,在精子形成的過程中,經過減數分裂,染色體的數目減半,所以雄果蠅的精子中含有一組非同源染色體(Ⅹ、Ⅱ、Ⅲ、Ⅳ 或 Y、Ⅱ、Ⅲ、Ⅳ)
細胞中的一組非同源染色體,它們在形態和功能上各不相同,但是攜帶著控制一種生物生長發育、遺傳和變異的全部信息,這樣的一組染色體,叫做一個染色體組。例如,雄果蠅精子中的這組染色體就組成了一個染色體組。
二倍體和多倍體 由受精卵發育而成的個體,體細胞中含有兩個染色體組的叫做二倍體。體細胞中含有三個或三個以上染色體組的叫做多倍體。其中,體細胞中含有三個染色體組的叫做三倍體;體細胞中含有四個染色體組的叫做四倍體。例如,人、果蠅、玉米是二倍體,香蕉是三倍體,馬鈴薯是四倍體。多倍體在植物中很常見,在動物中比較少見。
多倍體產生的主要原因,是體細胞在有絲分裂的過程中,染色體完成了復制,但是細胞受到外界環境條件(如溫度驟變)或生物內部因素的干擾,紡錘體的形成受到破壞,以致染色體不能被拉向兩極,細胞也不能分裂成兩個子細胞,於是就形成染色體數目加倍的細胞。如果這樣的細胞繼續進行正常的有絲分裂,就可以發育成染色體數目加倍的組織或個體。
人工誘導多倍體在育種上的應用 與二倍體植株相比,多倍體植株的莖稈粗壯,葉片、果實和種子都比較大,糖類和蛋白質等營養物質的含量都有所增加。例如,四倍體葡萄的果實比二倍體品種的大得多,四倍體番茄的維生素C的含量比二倍體的品種幾乎增加了一倍。因此,人們常常採用人工誘導多倍體的方法來獲得多倍體,培育新品種。
人工誘導多倍體的方法很多。目前最常用而且最有效的方法,是用秋水仙素來處理萌發的種子或幼苗。當秋水仙素作用於正在分裂的細胞時,能夠抑制紡錘體形成,導致染色體不分離,從而引起細胞內染色體數目加倍。染色體數目加倍的細胞繼續進行正常的有絲分裂,將來就可以發育成多倍體植株。目前世界各國利用人工誘導多倍體的方法已經培育出不少新品種,如含糖量高的三倍體無子西瓜和甜菜。此外,我國科技工作者還創造出自然界沒有的作物----八倍體小黑麥。
單倍體 在生物的體細胞中,染色體的數目不僅可以成倍地增加,還可以成倍地減少。例如,蜜蜂的蜂王和工蜂的體細胞中有32條染色體,而雄蜂的體細胞中只有16條染色體。像蜜蜂的雄蜂這樣,體細胞中含有本物種配子染色體數目的個體,叫做單倍體。
在自然條件下,玉米、高糧、水稻、番茄等高等植物,偶爾也會出現單倍體植株。與正常植株相比,單倍體植株長得弱小,而且高度不育。但是,它們在育種上有特殊的意義。育種工作者常常採用花葯離體培養的方法來獲得單倍體植株,然後經過人工誘導使染色體數目加倍,重新恢復到正常植株的染色體數目。用這種方法得到的植株,不僅能夠正常生殖,而且每對染色體上的成對的基因都是純合的,自交產生的後代不會發生性狀分離。因此,利用單倍體植株培育新品種,只需要兩年時間,就可以得到一個穩定的純系品種。與常規的雜交育種方法相比,明顯縮短了育種年限。
---------
學習生物的變異,知道變異的來源有兩個:環境因素改變和遺傳物質的改變。其中遺傳物質的改變引起的變異是可遺傳的,其來源主要有三個:基因突變、基因重組、染色體變異。
變異是生物進化的基礎。生物如果沒有變異現象,就不可能出現適應環境的物種。
2. 人工誘變的常用方法是
人工誘變的常用方法
1. 物理法:射線(紫外線、X光線、Y射線,中子線),激光微束,離子束,微波,超聲波,熱力等。
2. 化學誘變法:浸漬法、塗抹法、滴液法、注射法、施入法和熏蒸法。
化學誘變劑:鹼基類似物、烷化劑,移碼誘變劑,硫酸二乙酯(DFS)、5-溴尿嘧 啶(5-BU)、氮芥(Nm)、N'廣甲基N'亞硝基胍(NTG)。
3. 生物法:空間條件處理誘變,病原微生物誘變,轉基因誘變。
人工誘變
在人為的條件下,利用物理、化學等因素,誘發生物產生突變,從中選擇、培育動植物和微生物的新品種。誘變育種是指用物理、化學因素誘導植物的遺傳特性發生變異,再從變異群體中選擇符合人們某種要求的單株,進而培育成新的品種或種質的育種方法。它是繼選擇育種和雜交育種之後發展起來的一項現代育種技術。
我們知道,常規助雜交育種基本上是染色體的重新組合,這種技術一般並不引起染色體發生變異,更難以觸及到基因。而輻射的作用則不同,它們有的是與細胞中的原子、分子發生沖撞、造成電離或激發;有的則是以能量形式產生光電吸收或光電效應;還有的能引起細胞內的一系列理化過程。這些都會對細胞產生不同程度的傷害。對染色體的數目、結構等都會產生影響,使有的染色體斷裂了;有的丟失了一段,有的斷裂後在「自我修復」的過程中頭尾接倒了或是「張冠李戴」分別造成染色體的倒位和易位。當然射線也可作用在染色體核苷酸分子的鹼塞上,從而使基因(遺傳密碼)發生突變。至於化學誘變,有的葯劑是用其烷基置換其它分子中的氫原子,也有的本身是核苷酸鹼基的類似物,它可以「魚目混珠」,造成DNA復制中的錯誤。無疑這些都會使植物的基因發生突變。理、化因索的誘導作用;使得植物細胞的突變率比平時高出千百倍,有些變異是其它手段難以得到的。當然,所產生的變異絕大多數不能遺傳,所以,輻射後的早代一般不急於選擇。
物理誘變
應用較多的是輻射誘變,即用α射線、β射線、γ射線、Χ射線、中子和其他粒子、紫外輻射以及微波輻射等物理因素誘發變異。當通過輻射將能量傳遞到生物體內時,生物體內各種分子便產生電離和激發,接著產生許多化學性質十分活躍的自由原子或自由基團。它們繼續相互反應,並與其周圍物質特別是大分子核酸和蛋白質反應,引起分子結構的改變。由此又影響到細胞內的一些生化過程,如 DNA合成的中止、各種酶活性的改變等,使各部分結構進一步深刻變化,其中尤其重要的是染色體損傷。由於染色體斷裂和重接而產生的染色體結構和數目的變異即染色體突變,而DNA分子結構中鹼基的變化則造成基因突變。那些帶有染色體突變或基因突變的細胞,經過細胞世代將變異了的遺傳物質傳至性細胞或無性繁殖器官,即可產生生物體的遺傳變異。
化學誘變
化學誘變除能引起基因突變外,還具有和輻射相類似的生物學效應,如引起染色體斷裂等,常用於處理遲發突變,並對某特定的基因或核酸有選擇性作用。
化學誘變劑:主要指某些烷化劑,鹼基類似物,抗生素等化學葯物。化學誘變劑在植物上的應用一般認為始於1943年,當時F·約克斯用馬來糖(脲烷)誘發了月見草、百合和風鈴草的染色體畸變。這些早期工作為確立誘變育種的地位奠定了基礎。
化學誘變劑
(一)、烷化劑
烷化劑是栽培作物誘發突變的最重要的一類誘變劑。葯劑帶有一個或多個活潑的烷基。通過烷基置換,取代其它分子的氫原子稱為"烷化作用"所以這類物質稱烷化劑。
烷化劑分為以下幾類:
1. 烷基磺酸鹽和烷基硫酸鹽
代表葯劑:甲基磺酸乙酯(EMS)、硫酸二乙酯(DES)
2. 亞硝基烷基化合物
代表葯劑:亞硝基乙基脲(NEH)、N-亞硝基-N-乙基脲烷(NEU)
3. 次乙胺和環氧乙烷類
代表葯劑:乙烯亞胺(EI)
4. 芥子氣類
氮芥類、硫芥類
烷化劑的作用機制--烷化作用重點是核酸,導致DNA斷裂、缺失或修補。
(二)、核酸鹼基類似物
這類化合物具有與DNA鹼基類似的結構。
代表葯劑:
5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR) 為胸腺嘧啶(T)的類似物
2-氨基嘌呤(AP) 為腺嘌呤(A)的類似物
馬來醯肼(MH) 為尿嘧啶(U)的異構體
作用機制:作為DNA的成份而滲入到DNA分子中去,使DNA復制時發生配對錯誤,從而引起有機體變異。
(三)、其它誘變劑
亞硝酸 能使嘌呤或嘧啶脫氨,改變核酸結構和性質,造成DNA復制紊亂。HNO2還能造成DNA雙鏈間的交聯而引起遺傳效應。
疊氮化鈉(NaN3) 是一種呼吸抑制劑,能引起基因突變,可獲得較高的突變頻率,而且無殘毒。
提醒:有些化學誘變劑是有劇毒的。
3. 古代人類干預動物遺傳變異的最常用的方法是什麼
種內雜交是人類干預動物遺傳變異的最常用的方法。西漢時政府為了提高軍用騎乘馬的素質,從西域引入烏孫馬、大宛馬等良種馬。唐代廣泛從北部西部少數民族地區引入各種良種馬,各種馬都有一定印記,並建立了嚴格的馬籍制度。當時的隴右牧場成為牲畜雜交育種基地。史稱唐馬「既雜胡種,馬乃益壯」。在當時官營牧場之一的、位於今陝西大荔縣的沙苑監,由於這里牧養了各地的羊種,又有優越的水草條件,培育出皮、毛與肉質俱優的同羊,至今仍是我國優良的羊種。