⑴ 兩位數乘法心算有什麼快又簡單的方法
一、兩位數乘兩位數。
1.十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2.頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3.第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4.幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。
6.十幾乘任意數:
口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
註:和滿十要進一。
數學中關於兩位數乘法的「首同末和十」和「末同首和十」速演算法。所謂「首同末和十」,就是指兩個數字相乘,十位數相同,個位數相加之和為10,舉個例子,67×63,十位數都是6,個位7+3之和剛好等於10,我告訴他,象這樣的數字相乘,其實是有規律的。就是兩數的個位數之積為得數的後兩位數,不足10的,十位數上補0;兩數相同的十位取其中一個加1後相乘,結果就是得數的千位和百位。具體到上面的例子67×63,7×3=21,這21就是得數的後兩位;6×(6+1)=6×7=42,這42就是得數的前兩位,綜合起來,67×63=4221。類似,15×15=225,89×81=7209,64×66=4224,92×98=9016。我給他講了這個速算小「秘訣」後,小傢伙已經有些興奮了。在「糾纏」著讓我給他出完所有能出的題目並全部計算正確後,他又嚷嚷讓我教他「末同首和十」的速算方法。我告訴他,所謂「末同首和十」,就是相乘的兩個數字,個位數完全相同,十位數相加之和剛好為10,舉例來說,45×65,兩數個位都是5,十位數4+6的結果剛好等於10。它的計演算法則是,兩數相同的各位數之積為得數的後兩位數,不足10的,在十位上補0;兩數十位數相乘後加上相同的個位數,結果就是得數的百位和千位數。具體到上面的例子,45×65,5×5=25,這25就是得數的後兩位數,4×6+5=29,這29就是得數的前面部分,因此,45×65=2925。類似,11×91=1001,83×23=1909,74×34=2516,97×17=1649。
為了易於大家理解兩位數乘法的普遍規律,這里將通過具體的例子說明。通過對比大量的兩位數相乘結果,我把兩位數相乘的結果分成三個部分,個位,十位,十位以上即百位和千位。(兩位數相乘最大不會超過10000,所以,最大隻能到千位)現舉例:42×56=2352
其中,得數的個位數確定方法是,取兩數個位乘積的尾數為得數的個位數。具體到上面例子,2×6=12,其中,2為得數的尾數,1為個位進位數;
得數的十位數確定方法是,取兩數的個位與十位分別交叉相乘的和加上個位進位數總和的尾數,為得數的十位數。具體到上面例子,2×5+4×6+1=35,其中,5為得數的十位數,3為十位進位數;
得數的其餘部分確定方法是,取兩數的十位數的乘積與十位進位數的和,就是得數的百位或千位數。具體到上面例子,4×5+3=23。則2和3分別是得數的千位數和百位數。
因此,42×56=2352。再舉一例,82×97,按照上面的計算方法,首先確定得數的個位數,2×7=14,則得數的個位應為4;再確定得數的十位數,2×9+8×7+1=75,則得數的十位數為5;最後計算出得數的其餘部分,8×9+7=79,所以,82×97=7954。同樣,用這種演算法,很容易得出所有兩位數乘法的積。
⑵ 兩位數的乘法怎麼算最簡便
一、兩位數乘兩位數.1.十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾.例:12×14=?解:1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位.2.頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾.例:23×27=?2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位.3.第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾.例:37×44=?3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位.4.幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾.例:21×41=?2×4=82+4=61×1=121×41=8615.11乘任意數:口訣:首尾不動下落,中間之和下拉.例:11×23125=?2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一.6.十幾乘任意數:口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落.例:13×326=?13個位是33×3+2=113×2+6=123×6=1813×326=4238註:和滿十要進一.數學中關於兩位數乘法的「首同末和十」和「末同首和十」速演算法.所謂「首同末和十」,就是指兩個數字相乘,十位數相同,個位數相加之和為10,舉個例子,67×63,十位數都是6,個位7+3之和剛好等於10,我告訴他,象這樣的數字相乘,其實是有規律的.就是兩數的個位數之積為得數的後兩位數,不足10的,十位數上補0;兩數相同的十位取其中一個加1後相乘,結果就是得數的千位和百位.具體到上面的例子67×63,7×3=21,這21就是得數的後兩位;6×(6+1)=6×7=42,這42就是得數的前兩位,綜合起來,67×63=4221.類似,15×15=225,89×81=7209,64×66=4224,92×98=9016.我給他講了這個速算小「秘訣」後,小傢伙已經有些興奮了.在「糾纏」著讓我給他出完所有能出的題目並全部計算正確後,他又嚷嚷讓我教他「末同首和十」的速算方法.我告訴他,所謂「末同首和十」,就是相乘的兩個數字,個位數完全相同,十位數相加之和剛好為10,舉例來說,45×65,兩數個位都是5,十位數4+6的結果剛好等於10.它的計演算法則是,兩數相同的各位數之積為得數的後兩位數,不足10的,在十位上補0;兩數十位數相乘後加上相同的個位數,結果就是得數的百位和千位數.具體到上面的例子,45×65,5×5=25,這25就是得數的後兩位數,4×6+5=29,這29就是得數的前面部分,因此,45×65=2925.類似,11×91=1001,83×23=1909,74×34=2516,97×17=1649.為了易於大家理解兩位數乘法的普遍規律,這里將通過具體的例子說明.通過對比大量的兩位數相乘結果,我把兩位數相乘的結果分成三個部分,個位,十位,十位以上即百位和千位.(兩位數相乘最大不會超過10000,所以,最大隻能到千位)現舉例:42×56=2352其中,得數的個位數確定方法是,取兩數個位乘積的尾數為得數的個位數.具體到上面例子,2×6=12,其中,2為得數的尾數,1為個位進位數;得數的十位數確定方法是,取兩數的個位與十位分別交叉相乘的和加上個位進位數總和的尾數,為得數的十位數.具體到上面例子,2×5+4×6+1=35,其中,5為得數的十位數,3為十位進位數;得數的其餘部分確定方法是,取兩數的十位數的乘積與十位進位數的和,就是得數的百位或千位數.具體到上面例子,4×5+3=23.則2和3分別是得數的千位數和百位數.因此,42×56=2352.再舉一例,82×97,按照上面的計算方法,首先確定得數的個位數,2×7=14,則得數的個位應為4;再確定得數的十位數,2×9+8×7+1=75,則得數的十位數為5;最後計算出得數的其餘部分,8×9+7=79,所以,82×97=7954.同樣,用這種演算法,很容易得出所有兩位數乘法的積.
⑶ 怎麼算兩位數乘兩位數,所有的簡便方法
三年級數學這學期要學到兩位數乘兩位數,對於中年級的小同學來說,這種運算數字較大,相應的也有了難度,很容易在運算當中出錯,那麼,如何避免出錯,更快速地得出結果呢?
這里介紹三種豎式速演算法,第一種,是傳統的運算方法:
同樣是列豎式,先用兩個乘數的個位相乘,得數末位與乘數個位對齊。
接下來,兩個乘數的個位與十位交叉相乘,需要兩次,得數末位都與乘數十位對齊。
第四步,兩個乘數的十位相乘,得數末位與乘數百位對齊。
最後,統一相加,得出積。
這種速算方法的特點,是運算當中不需要進位,一目瞭然,更快得到運算的結果。
⑷ 兩位數乘兩位數有哪些簡便計算
可以將其中的兩位數寫成與另一個兩位數相對應較為簡單的數 + 剩餘的數,便於口算
也可以看兩數的特徵,根據特徵,靈活利用
例如
75 * 25=75*(20+5)=1500+375=1875
⑸ 兩位數加減法簡便方法有幾種
兩位數加減法簡便方法有兩種,分別為:
兩位數加以位數,先把個位數加個位數,再加十位數。
兩位數加整十數,先用十位數加十位數,再加個位數。
至少用8個同樣的小正方體拼成一個大正方體。
擺一個正方形至少要用4根同樣長的小棒。擺一個長方形至少要用六根同樣長的小棒。
購物需用人民幣,它有單位元角分,一角可以換十分,一元需用十角換。
比較錢數多和少,單位統一直接比,單位不同化一化,化成相同再比較。
計算錢數要注意,單位相同才加減,加滿10角進1元,加滿10分進1角。
幾元減幾角,計算有妙招,幾元拿1元,當做10角減。
整十加、減很容易,只把十位數字來計算,十位計算得幾十,個位只需寫上0。
整十連加和連減,計算順序有規定,從左往右依次算,步步都要算仔細。
進位加法不難算,滿十進一是重點。個位相加滿了十,向十進一要切記。
兩位數減一位數,先用個位數減個位數,再加十位數再加十位數。兩位數減十位數,先用十位數減十位數,再加個位數。
兩位數減一位數,個位數相減,十位數不變,兩位數減整十數,十位數相減,個位數不變。
⑹ 兩位數乘兩位數簡便運算
兩位數乘兩位數有如下速算口訣:
十幾乘以十幾的速算規律口訣:頭加後尾,尾乘尾(滿十進位)。
任意兩位數乘以11的速算規律口訣:兩頭一拉,中間相加,滿十進位。
頭同尾合十口訣:頭乘(頭加1)尾乘尾(不滿十前面用0佔位)。
任意兩位數相乘速算口訣:頭乘頭,尾乘尾放一排。
裡面相乘放中間,外面相乘放下面,通通相加是得數。
傳統的兩位數乘兩位數有豎式法,再出現進位的時候,列豎式的情況下,我們一定要注意好數位對齊,然後用一個數乘另外一個數,將得出來的數末位和個位對其之後,再用這個數乘十位上數去乘這個數的乘數,然後的出來的末位和乘數的十位對齊之後,將兩次的結果下落相加就可以了,這也是一種比較簡便的演算法。
我們經常會遇到兩位數乘兩位數的問題,我們計算的數字比較大時,在運算中會出現錯誤的,所以我們可以選擇一些比較快速的演算法,最後再用一個其他方式來進行一個驗算就可以了。
⑺ 任意兩個兩位數相乘的簡便演算法
一、兩位數乘兩位數.1.十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾.例:12×14=?解:1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位.2.頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾.例:23×27=?2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位.3.第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾.例:37×44=?3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位.4.幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾.例:21×41=?2×4=82+4=61×1=121×41=8615.11乘任意數:口訣:首尾不動下落,中間之和下拉.例:11×23125=?2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一.6.十幾乘任意數:口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落.例:13×326=?13個位是33×3+2=113×2+6=123×6=1813×326=4238註:和滿十要進一.數學中關於兩位數乘法的「首同末和十」和「末同首和十」速演算法.所謂「首同末和十」,就是指兩個數字相乘,十位數相同,個位數相加之和為10,舉個例子,67×63,十位數都是6,個位7+3之和剛好等於10,我告訴他,象這樣的數字相乘,其實是有規律的.就是兩數的個位數之積為得數的後兩位數,不足10的,十位數上補0;兩數相同的十位取其中一個加1後相乘,結果就是得數的千位和百位.具體到上面的例子67×63,7×3=21,這21就是得數的後兩位;6×(6+1)=6×7=42,這42就是得數的前兩位,綜合起來,67×63=4221.類似,15×15=225,89×81=7209,64×66=4224,92×98=9016.我給他講了這個速算小「秘訣」後,小傢伙已經有些興奮了.在「糾纏」著讓我給他出完所有能出的題目並全部計算正確後,他又嚷嚷讓我教他「末同首和十」的速算方法.我告訴他,所謂「末同首和十」,就是相乘的兩個數字,個位數完全相同,十位數相加之和剛好為10,舉例來說,45×65,兩數個位都是5,十位數4+6的結果剛好等於10.它的計演算法則是,兩數相同的各位數之積為得數的後兩位數,不足10的,在十位上補0;兩數十位數相乘後加上相同的個位數,結果就是得數的百位和千位數.具體到上面的例子,45×65,5×5=25,這25就是得數的後兩位數,4×6+5=29,這29就是得數的前面部分,因此,45×65=2925.類似,11×91=1001,83×23=1909,74×34=2516,97×17=1649.為了易於大家理解兩位數乘法的普遍規律,這里將通過具體的例子說明.通過對比大量的兩位數相乘結果,我把兩位數相乘的結果分成三個部分,個位,十位,十位以上即百位和千位.(兩位數相乘最大不會超過10000,所以,最大隻能到千位)現舉例:42×56=2352其中,得數的個位數確定方法是,取兩數個位乘積的尾數為得數的個位數.具體到上面例子,2×6=12,其中,2為得數的尾數,1為個位進位數;得數的十位數確定方法是,取兩數的個位與十位分別交叉相乘的和加上個位進位數總和的尾數,為得數的十位數.具體到上面例子,2×5+4×6+1=35,其中,5為得數的十位數,3為十位進位數;得數的其餘部分確定方法是,取兩數的十位數的乘積與十位進位數的和,就是得數的百位或千位數.具體到上面例子,4×5+3=23.則2和3分別是得數的千位數和百位數.因此,42×56=2352.再舉一例,82×97,按照上面的計算方法,首先確定得數的個位數,2×7=14,則得數的個位應為4;再確定得數的十位數,2×9+8×7+1=75,則得數的十位數為5;最後計算出得數的其餘部分,8×9+7=79,所以,82×97=7954.同樣,用這種演算法,很容易得出所有兩位數乘法的積.
⑻ 四年級兩位數簡便計算有什麼技巧
加法的簡便運算。
加法進行簡便運算運用到的運算定律主要用兩個:加法交換律和加法結合律,當然還有其它靈活處理的方法,其基本原則就是湊十、湊百等,總之進行簡便運算處理後要有利於我們進行口算得出結果。