導航:首頁 > 知識科普 > 測蛋白質濃度的方法有哪些

測蛋白質濃度的方法有哪些

發布時間:2023-06-18 21:37:12

❶ 蛋白質含量的測定方法

蛋白質含量的十種測定方法如下:

三、雙縮脲法:

實驗原理:雙縮脲(NH3CONHCONH3)是兩個分子脲經180℃左右加熱,放出一個分子氨後得到的產物。在強鹼性溶液中,雙縮脲與CuSO4形成紫色絡合物,稱為雙縮脲反應。凡具有兩個醯胺基或兩個直接連接的肽鍵,或能過一個中間碳原子相連的肽鍵,這類化合物都有雙縮脲反應。

紫色絡合物顏色的深淺與蛋白質濃度成正比,而與蛋白質分子量及氨基酸成分無關,故可用來測定蛋白質含量。測定范圍為1~10mg蛋白質。干擾這一測定的物質主要有:硫酸銨、Tris緩沖液和某些氨基酸等。

四、BCA法:

實驗原理:BCA檢測法是Lowry測定法的一種改進方法。與Lowry方法相比,BCA法的操作更簡單,試劑更加穩定,幾乎沒有干擾物質的影響,靈敏度更高(微量檢測可達到0.5μg/ml),應用更加靈活。蛋白質分子中的肽鍵在鹼性條件下能與Cu2+絡合生成絡合物,同時將Cu2+還原成Cu+。

二喹啉甲酸及其鈉鹽是一種溶於水的化合物,在鹼性條件下,可以和Cu+結合生成深紫色的化合物,這種穩定的化合物在562nm處具有強吸收值,並且化合物顏色的深淺與蛋白質的濃度成正比。故可用比色的方法確定蛋白質的含量。

五、Lowry法:

實驗原理:蛋白質在鹼性溶液中其肽鍵與Cu2+螯合,形成蛋白質一銅復合物,此復合物使酚試劑的磷鉬酸還原,產生藍色化合物,在一定條件下,利用藍色深淺與蛋白質濃度的線性關系作標准曲線並測定樣品中蛋白質的濃度。

六、考馬斯亮藍法:

實驗原理:考馬斯亮藍法測定蛋白質濃度,是利用蛋白質―染料結合的原理,定量的測定微量蛋白濃度的快速、靈敏的方法。考馬斯亮藍G―250存在著兩種不同的顏色形式,紅色和藍色。它和蛋白質通過范德華力結合,在一定蛋白質濃度范圍內,蛋白質和染料結合符合比爾定律。

此染料與蛋白質結合後顏色有紅色形式和藍色形式,最大光吸收由465nm變成595nm,通過測定595nm處光吸收的增加量可知與其結合蛋白質的量。蛋白質和染料結合是一個很快的過程,約2min即可反應完全,呈現最大光吸收,並可穩定1h,之後,蛋白質―染料復合物發生聚合並沉澱出來。

七、凱氏定氮法:

實驗原理:凱氏定氮法用於測定有機物的含氮量,若蛋白質的含氮量已知時,則可用此法測定樣品中蛋白質的含量。當蛋白質與濃硫酸共熱時,其中的碳、氫兩元素被氧化成二氧化碳和水,而氮則轉變成氨,並進一步與硫酸作用生成硫酸銨。此過程通常稱為「消化」。

但是,這個反應進行得比較緩慢,通常需要加入硫酸鉀或硫酸鈉以提高反應液的沸點,並加入硫酸銅作為催化劑,以促進反應的進行。

八、Lowry法測定試劑盒:

Folin酚試劑法包括兩步反應:第一步是在鹼性條件下,蛋白質與銅作用生成蛋白質-銅絡合物;第二步是此絡合物將Folin試劑還原,產生深藍色,顏色深淺與蛋白質含量成正比。定量范圍為5~100μg/ml蛋白質。Folin試劑顯色反應由酪氨酸、色氨酸和半胱氨酸引起,因此樣品中若含有酚類、檸檬酸和巰基化合物均有干擾作用。

此外,不同蛋白質因酪氨酸、色氨酸含量不同而使顯色強度稍有不同。

九、BCA法測定試劑盒:

鹼性條件下,蛋白將Cu2+還原為Cu+,Cu+與BCA試劑形成紫顏色的絡合物,測定其在562nm處的吸收值,並與標准曲線對比,即可計算待測蛋白的濃度。常用濃度的去垢劑SDS,TritonX-100,Tween不影響檢測結果,但受螯合劑(EDTA,EGTA)、還原劑(DTT,巰基乙醇)和脂類的影響。

實驗中,若發現樣品稀釋液或裂解液本身背景值較高,可試用Bradford蛋白濃度測定試劑盒。

十、分光光度計法。

1、取八支(或者更多)干凈的10ml離心管,標記上號。

2、取100ulBSA,加PBS2.4ml稀釋至終濃度為0.2mg/ml。

3、5×G250染色液使用前請顛倒3-5次混勻,取10ml5×G250染色液,加入40ml雙蒸水,混勻成1×G250染色液,此1×G250染色液可在4℃保存一周。

4、按下表加入試劑(以每孔5ml計,多餘的用來清洗比色皿)。

❷ 蛋白質濃度測定方法

蛋白質濃度測定方法:UV法,BCA法,考馬斯亮藍法等。

3、考馬斯亮藍法。

考馬斯亮藍 (Coomassie Brilliant Blue) 法測定蛋白質濃度,是利用蛋白質―染料結合的原理,定量測定微量蛋白濃度快速、靈敏的方法。這種蛋白質測定法具有超過其他幾種方法的突出優點,因而正在得到廣泛的應用。目前,這一方法是也靈敏度最高的蛋白質測定法之一。

考馬斯亮藍G-250染料,在酸性溶液中與蛋白質結合,使染料的最大吸收峰 (lmax) 的位置,由465nm變為595nm,溶液的顏色也由棕黑色變為藍色。通過測定595nm處光吸收的增加量可知與其結合蛋白質的量。研究發現,染料主要是與蛋白質中的鹼性氨基酸(特別是精氨酸)和芳香族氨基酸殘基相結合。


❸ 常用來測定蛋白質含量的方法有哪些優缺點是什麼

1、凱氏定氮法

凱氏定氮法是測定化合物或混合物中總氮量的一種方法。即在有催化劑的條件下,用濃硫酸消化樣品將有機氮都轉變成無機銨鹽,然後在鹼性條件下將銨鹽轉化為氨,隨水蒸氣蒸餾出來並為過量的硼酸液吸收,再以標准鹽酸滴定,就可計算出樣品中的氮量。

由於蛋白質含氮量比較恆定,可由其氮量計算蛋白質含量,故此法是經典的蛋白質定量方法。

優點:可用於所有食品的蛋白質分析中;操作相對比較簡單;實驗費用較低;結果准確,是一種測定蛋白質的經典方法;用改進方法(微量凱氏定氮法)可測定樣品中微量的蛋白質。

缺點:凱氏定氮法只是一個氧化還原反應,把低價氮氧化並轉為氨鹽來測定,而不能把高價氮還原為氮鹽的形式,所以不可以測出物質中所有價態的氮含量。

2、雙縮脲法

雙縮脲法是一個用於鑒定蛋白質的分析方法。雙縮脲試劑是一個鹼性的含銅試液,呈藍色,由1%氫氧化鉀、幾滴1%硫酸銅和酒石酸鉀鈉配製。

當底物中含有肽鍵時(多肽),試液中的銅與多肽配位,配合物呈紫色。可通過比色法分析濃度,在紫外可見光譜中的波長為540nm。鑒定反應的靈敏度為5-160mg/ml。鑒定反應蛋白質單位1-10mg。

優點:測定速度較快,干擾物質少,不同蛋白質產生的顏色深淺相近。

缺點:①靈敏度差; ② 三羥甲基氨基甲烷、一些氨基酸和EDTA等會干擾該反應。

3、酚試劑法

取6支試管分別標號,前5支試管分別加入不同濃度的標准蛋白溶液,最後一支試管加待測蛋白質溶液,不加標准蛋白溶液,在室溫下放置30分鍾,以未加蛋白質溶液的第一支試管作為空白對照,於650nm波長處測定各管中溶液的吸光度值。

優點:靈敏度高,對水溶性蛋白質含量的測定很有效。

缺點:①費時,要精確控制操作時間;②酚法試劑的配製比較繁瑣。

4、紫外吸收法

大多數蛋白質在280nm波長處有特徵的最大吸收,這是由於蛋白質中有酪氨酸,色氨酸和苯丙氨酸存在,可用於測定0.1~0.5mg/mL含量的蛋白質溶液。

取9支試管分別標號,前8支試管分別加入不同濃度的標准蛋白溶液,1號試管不加標准蛋白溶液,最後一支試管加待測蛋白質溶液,而不加標准蛋白溶液,每支試管液體總量通過加入蒸餾水補足而保持一致,將液體混合均勻,在280nm波長處進行比色,記錄吸光度值。

優點:簡便、靈敏、快速,不消耗樣品,測定後能回收。 

缺點:①測定蛋白質含量的准確度較差,專一性差; ②干擾物質多,若樣品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物質,會出現較大的干擾。

5、考馬斯亮藍法

考馬斯亮藍顯色法的基本原理是根據蛋白質可與考馬斯亮藍G-250 定量結合。當考馬斯亮藍 G-250 與蛋白質結合後,其對可見光的最大吸收峰從 465nm 變為 595nm。

在考馬斯亮藍 G-250 過量且濃度恆定的情況下,當溶液中的蛋白質濃度不同時,就會有不同量的考馬斯亮藍 G-250 從吸收峰為 465nm 的形式轉變成吸收峰為 595nm 的形式,而且這種轉變有一定的數量關系。

一般情況,當溶液中的蛋白質濃度增加時,顯色液在 595nm 處的吸光度基本能保持線性增加,因此可以用考馬斯亮藍 G-250 顯色法來測定溶液中蛋白質的含量。

優點:靈敏度高,測定快速、簡便,干擾物質少,不受酚類、游離氨基酸和緩沖劑、絡合劑的影響,適合大量樣品的測定。

缺點:由於各種蛋白質中的精氨酸和芳香族氨基酸的含量不同,因此用於不同蛋白質測定時有較大的偏差。

❹ 測蛋白濃度的方法

測蛋白濃度的方法有:凱氏定氮法、雙縮脲法、酚試劑法、紫外吸收法。

1、凱氏定氮法:凱氏定氮法是測定化合物或混合物中總氮量的一種方法。即在有催化劑的條件下,用濃硫酸消化樣品將有機氮都轉變成無機銨鹽,然後在鹼性條件下將銨鹽轉化為氨,隨水蒸氣蒸餾出來並為過量的硼酸液吸收,再以標准鹽酸滴定。

3、酚試劑法:取6支試管分別標號,前5支試管分別加入不同濃度的標准蛋白溶液,最後一支試管加待測蛋白質溶液,不加標准蛋白溶液,在室溫下放置30分鍾,以未加蛋白質溶液的第一支試管作為空白對照,於650nm波長處測定各管中溶液的吸光度值。

4、紫外吸收法:大多數蛋白質在280nm波長處有特徵的最大吸收,這是由於蛋白質中有酪氨酸,色氨酸和苯丙氨酸存在,可用於測定0.1~0.5mg/mL含量的蛋白質溶液。

❺ 常用的蛋白質含量測定方法有哪些

①凱氏定氮法
原理:蛋白質平均含氮量為16%。當樣品與濃硫酸共熱,蛋白氮轉化為銨鹽,在強鹼性條件下將氨蒸出,用加有指示劑的硼酸吸收,最後用標准酸滴定硼酸,通過標准酸的用量即可求出蛋白質中的含氮量和蛋白質含量。
②雙縮脲法
原理:尿素在180℃下脫氨生成雙縮脲,在鹼性溶液中雙縮脲可與Cu2+形成穩定的紫紅色絡合物。蛋白質中的肽鍵實際上就是醯胺鍵,故多肽、蛋白質等都有雙縮脲(biuret)反應,產生藍色或紫色復合物。比色定蛋白質含量。
缺點:靈敏度低,樣品必須可溶,在大量糖類共存和含有脯氨酸的肽中顯色不好。其 精確度 較差 (數mg),且會受樣品中 硫酸銨 及 Tris 的干擾,但 准確度 較高,不受蛋白質的種類影響。
③Folin酚法(Lowry)
Folin酚法是biuret 法的延伸,所用試劑由試劑甲和乙兩部分組成。試劑甲相當於雙縮脲試劑(鹼性銅試劑),試劑乙中含有磷鉬酸和磷鎢酸。
在鹼性條件下,蛋白質中的巰基和酚基等可將Cu2+還原成Cu+, Cu+能定量地與Folin-酚試劑反應生成藍色物質,600nm比色測定蛋白質含量。
靈敏度較高(約 0.1 mg),但較麻煩,也會受 硫酸銨 及 硫醇化合物 的干擾。 步驟中各項試劑的混合,要特別注意均勻澈底,否則會有大誤差。
④紫外法
280nm光吸收法:利用Tyr在280nm在吸收進行測定。
280nm-260nm的吸收差法:若樣品液中有少量核酸共存按下式計算:
蛋白質濃度(mg/ml)=1.24E280-0.74E260 (280 260為角標)
⑤色素結合法(Bradford 法)
直接測定法:利用蛋白質與色素分子(Coomassie Brilliant Blue G-250)結合物的光吸收用分光光度法進行測定。
考馬斯亮蘭(CBG)染色法測定蛋白質含量。CBG 有點像指示劑,會在不同的酸鹼度下變色;在酸性下是茶色,在中性下為藍色。當 CBG接到蛋白質上去的時候,因為蛋白質會提供 CBG一個較為中性的環境,因此會變成藍色。當樣本中的蛋白質越多,吸到蛋白質上的CBG也多,藍色也會增強。因此,藍色的呈色強度,是與樣本中的蛋白質量成正比。
間接測定法:蛋白質與某些酸性或鹼性色素分子結合形成不溶性的鹽沉澱。用分光光度計測定未結合的色素,以每克樣品結合色素的量來表示蛋白質含量的多少。
⑥BCA法
BCA(Bicinchoninc acid procere,4,4』-二羧-2,2』-二喹啉)法與Lowry法相似,主要差別在鹼性溶液中,蛋白質使Cu2+轉變Cu+後,進一步以BCA 取代Folin試劑與Cu+結合產生深紫色,在波長562 nm有強的吸收。
它的優點在於鹼性溶液中BCA 比Folin試劑穩定,因此BCA與鹼性銅離子溶液結合的呈色反應只需一步驟即完成。靈敏度Lowry法相似。
本方法對於陰離子、非離子性及二性離子的清潔劑和尿素較具容忍度,較不受干擾,但會受還原糖 及EDTA的干擾。
⑦膠體金測定法
膠體金(colloidal gold)是氯金酸(chloroauric acid)的水溶膠,呈洋紅色,具有高電子密度,並能與多種生物大分子結合。
膠體金是一種帶負電荷的疏水膠體遇蛋白質轉變為藍色,顏色的改變與蛋白質有定量關系,可用於蛋白質的定量測定。
⑧其他方法
有些蛋白質含有特殊的 非蛋白質基團,如 過氧化物酶含有 亞鐵血紅素基團,可測 403 nm 波長的吸光來定量之。 含特殊金屬的酶 (如鎘),則可追蹤該金屬。

❻ 蛋白質含量的測定方法有哪些

蛋白質含量測定的方法有微量凱氏定氮法、雙縮脲法、folin―酚試劑法、考馬斯亮蘭法、紫外吸收法等。

1、微量凱氏定氮法:含氮有機物即分解產生氨(消化),氨又與硫酸作用,變成硫酸銨。經強鹼鹼化使之分解放出氨,借蒸汽將氨蒸至酸液中,根據此酸液被中和的程度可計算得樣品之氮含量。

2、雙縮脲法:雙縮脲是兩個分子脲經180℃左右加熱,放出一個分子氨後得到的產物。在強鹼性溶液中,雙縮脲與CuSO4形成紫色絡合物,稱為雙縮脲反應。

3、folin―酚試劑法:這種蛋白質測定法是最靈敏的方法之一。過去此法是應用最廣泛的一種方法,由於其試劑乙的配製較為困難,近年來逐漸被考馬斯亮蘭法所取代。

4、考馬斯亮蘭法:1976年由bradford建立的考馬斯亮蘭法,是根據蛋白質與染料相結合的原理設計的。這一方法是目前靈敏度最高的蛋白質測定法。

5、紫外吸收法:蛋白質分子中,酪氨酸、苯丙氨酸和色氨酸殘基的苯環含有共軛雙鍵,使蛋白質具有吸收紫外光的性質。吸收高峰在280nm處,其吸光度(即光密度值)與蛋白質含量成正比。

❼ 蛋白濃度測定的方法具體有哪些

蛋白濃度測定的方法:

1. 紫外分光光度法

紫外光譜吸收法測定蛋白質含量是講蛋白質溶液直接在紫外分光光度計中測定的方法,不需要任何試劑,操作簡單且易回收。蛋白質溶液在280nm附近有強烈的吸收,這是由於蛋白質中酪氨酸、色氨酸殘基而引起的,所以光密度受這兩種氨基酸含量的支配。另外核蛋白或提取過程中雜有的核酸對測定結果引起極大誤差,其最大吸收在260nm。所以同時測定280及260nm兩種波長的吸光度,通過計算可得較為正確的蛋白質含量。

2. 雙縮脲法

利用半飽和硫酸銨或27.8%硫酸鈉——亞硫酸鈉可使血清球蛋白沉澱下來,而此時血清白蛋白仍處於溶解狀態,因此可把兩者分開,這種利用不同濃度的中性鹽分離蛋白的方法稱為鹽方法。鹽析分離蛋白質的方法不僅用於臨床醫學,而且還廣泛地用於生物化學研究工作中,如一些特殊蛋白質—酶、蛋白激素等的分離和純化。

蛋白質和雙縮脲一樣,在鹼性溶液中能與銅離子形成紫色絡合物(雙縮脲反應),且其呈色深淺與蛋白質的含量成正比,因此可於蛋白質的定量測定。

但必須注意,此反應並非蛋白質所特有,凡分子內有兩個或兩個以上的肽鍵的化合物以及分子內有—CH2—NH2等結構化合物,雙縮脲反應也呈陽性。本實驗用27.8%硫酸鈉—亞硫酸鈉溶液稀釋血清,取出一部分用雙縮脲反應測定蛋白質的含量,剩餘部分則用濾紙過濾,使析出的球蛋白與白蛋白分離,取出濾液用同一反應測定白蛋白的含量。總蛋白與白蛋白含量之差即球蛋白的含量。白蛋白與球蛋白之比即所謂的白/球比值。

3. Folin-酚試劑法

目前實驗室較多用Folin-酚法測定蛋白質含量,此法的特點是靈敏度高,較雙縮脲高兩個數量級,較紫外法略高,操作稍微麻煩,反應約在15分鍾有最大顯色,並最少可穩定幾個小時,其不足之處是干擾因素較多,有較多種類的物質都會影響測定結果的准確性。其原理是蛋白質中含有酚基的酪氨酸,可與酚試劑中的磷鉬鎢酸作用產生蘭色化合物,顏色深淺與蛋白含量成正比。

4. 考馬氏亮藍G-250

此方法是1976年Bradform建立。染料結合法測定蛋白質的優點是靈敏度較高,可檢測到微量蛋白,操作簡便、快迅,試劑配製極簡單,重復性好,但干擾因素多。考馬氏亮藍G-250具有紅色和青色兩種色調、在酸性溶液中游離狀度下為棕紅色,當它通過疏水作用與蛋白質結合後,變成藍色,最大吸收波長從465nm轉移到595nm處,在一定的范圍內,蛋白質含量與 595nm的吸光度成正比,測定595nm處光密度值的增加即可進行蛋白質的定量。

以上便是實驗室中常見的幾種蛋白濃度測定的方法,另外還有凱氏定氮法和BCA法,有凱氏定氮法結果最精確,但操作復雜,BCA法又以其試劑穩定,抗干擾能力較強,結果穩定,靈敏度高而受到歡迎。

閱讀全文

與測蛋白質濃度的方法有哪些相關的資料

熱點內容
硒鼓用什麼方法打不開 瀏覽:661
如何學好語文教學方法 瀏覽:561
等差的最佳方法 瀏覽:966
失眠恢復訓練的方法 瀏覽:235
高三升學最佳方法 瀏覽:188
租賃車的技巧和方法 瀏覽:609
房屋用粘鋼方法加固如何檢測強度 瀏覽:578
食用油哪幾重提煉方法 瀏覽:690
手機檢測手機真假有幾種方法 瀏覽:969
氧感測器檢測方法深圳 瀏覽:452
子類調用父類方法時如何處理變數 瀏覽:422
番茄豆苗種植方法 瀏覽:595
手環檢測儀使用方法 瀏覽:384
正確發聲訓練方法 瀏覽:56
東莞哪裡有塑料內飾劃痕處理方法 瀏覽:373
浴室肌肉鍛煉方法 瀏覽:756
如何diy扎染方法圖解 瀏覽:377
13兒童鼻竇炎治療方法 瀏覽:623
除了測紙還有什麼方法確定懷孕 瀏覽:969
實驗性研究的方法及特點 瀏覽:572