㈠ 小學數學簡便運算竅門
小學數學簡便運算竅門如下:
(一)運用加法的交換律、結合律進行計算。要求學生善於觀察題目,同時要有湊整意識。
如:5.7+3.1+0.9+1.3,等。
(四)運用減法的性質進行簡算。減法的性質用字母公式表示:A-B-C=A-(B+C),同時注意逆進行。
如:7691-(691+250)。
(五)運用除法的性質進行簡算。除法的性質用字母公式表示如下瞎明:A÷B÷C=A÷(B×C),同時注意逆進行,
如:736÷25÷4。
(六)接近整百的數的運算。這種題型需要拆數、轉化等技巧配合。
如;302+76=300+76+2,298-188=300-188-2,等。
(七)認真觀察某項為0或1的運算。
如:7.93+2.07×(4.5-4.5)等。
㈡ 四年級簡便運算的技巧和方法是什麼
方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,可以「帶符號搬家」。例如:a+b+c=a+c+b、a×b×c=a×c×b等等。
方法二:去括弧法
在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加)。
方法三:乘法分配律法
分配法:括弧里是加或減運算,與另一個數相乘,注意分配;提取公因式:注意相同因數的提取;注意構造,讓算式滿足乘法分配律的條件。
方法四:拆分法
拆分法屬於為了方便計算把一個數拆成幾個數,這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小。
方法五:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
㈢ 小學簡便計算的竅門
方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
方法二:結合律法
(一)加括弧法
1.在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
2.在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
(二)去括弧法
1.在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加。)。
2.在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)。
㈣ 五年級簡便運算的技巧和方法是什麼
簡便運算方法:
1、分配法 括弧里是加或減運算,與另一個數相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540。
2、提取公因式 注意相同因數的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 這里35是相同因數。
3、注意構造,讓算式滿足乘法分配律的條件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500。
簡便計算注意:
1、在同級運算中,可以任意交換數字的位置,但要連著前面的符號一起交換。(加法或乘法交換律)。
2 、在同級運算中,加號或乘號後面可以直接添括弧,去括弧。減號、除號後面添括弧,去括弧,括弧裡面的要變號。(加法或乘法結合律)。
3、湊一法,湊十法,湊百法,湊千法:「前面湊九,末尾湊十」。
㈤ 四年級數學簡便計算方法技巧
簡便運算的技巧和方法如下:
1.提取公因式:這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數,要注意相同因數的提取。
2.借來借去法:看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
7.乘法分配律:兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。這叫做乘法分配律。用字母表示:(a+b)×c= a×c+b×c,a ×( b+c) =a×b+a×c。
㈥ 小學數學簡便運算的技巧和方法
小學數學的簡便運算無外乎是幾種,比如說湊整法
比如說各種結合律交換律等等
㈦ 四年級數學簡便計算方法技巧是什麼
四年級數學簡便計算方法技巧:
1、分配法
括弧里是加或減運算,與另一個數相乘,注意分配。例:45×(10+2)=45×10+45×2=450+90=540
2、提取公因式
注意相同因數的提取。例:35×78+22×35=35×(78+22)=35×100=3500這里35是相同因數。
3、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。適用於加法交換律和乘法交換律。
例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81
4、借來還去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。
四年級數學簡便方法:
1、加法的簡便運算。加法進行簡便運算運用到的運算定律主要用兩個:加法交換律和加法結合律,當然還有其它靈活處理的方法,其基本原則就是湊十、湊百等,總之進行簡便運算處理後要有利於我們進行口算得出結果。
2、乘法的簡便運算之一。巧用乘法交換律和乘法結合律進行簡便運算。其基本方法也是通過交換和結合達到湊成整十、整百、整千的數,便於我們口算出結果。
3、減法的簡便運算。減法的簡便運算主要是運用減法的運算性質,即連減兩個數等於減去這兩個數的和。
㈧ 三年級數學簡便演算法技巧
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
㈨ 六年級簡便運算的技巧和方法是什麼
綜述,六年級簡便運算的技巧和方法有提取公因式、借來借去法、拆分法和乘法分配律結、利用基準數、利用公式法、裂項法等等。
一、提取公因式
這個方法實實際是運用子乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)
二、借來借去法
考試中有看到998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。還要注意還,有借有還,再借不難。
例如:9999+999+99+9=9999+1+999+1+99+1+9+1-4
三、拆分法和乘法分配律結
這種方法要靈活掌握拆分法和乘法分配律,看到99、101、9.8等接近一個整數的時候,首先考慮拆分。
例如:34×9.9=34×(10-0.1)
四、利用基準數
在一系列數中找出一個折中的數字來代表這一系列的數字,當然要記得這一數字的選擇不能偏離這一系列數字太遠。
例如:2072+2052+2062+2042+2083=(2062×5)+10-10-20+21
五、利用公式法
(1)加法交換律:兩數相加交換加數的位置,和不變。
(2)加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
(3)乘法交換律:兩數相乘,交換因數的位置,積不變。
(4)乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
(5)乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
(6)除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
六、裂項法
分數裂項是指將分數版式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱這國裂項法。
如:1/[n(n+1)]=(1/n)-[1/(n+1)]
1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]
1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}
㈩ 三年級簡便運算的技巧和方法
三年級簡便運算的技巧和方法:帶符號搬家法、結合律法、乘法分配律法、湊整法、拆分法以及裂項法。
1、帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算),又沒有括弧時,我們可以「帶符號搬家」。
2、結合律法
(1)加括弧法:在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧沖廳里要變號;在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
5、拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小。
6、裂項法
分數裂項是指將分數算式中的項進行拆分散早隱,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。