一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。
示例:
計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
示例:
計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
示例:
計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
示例:
計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
數學乘法運算定律
整數的乘法運算滿足:交換律,結合律,分配律,消去律。
隨著數學的發展, 運算的對象從整數發展為更一般群。
群中的乘法運算不再要求滿足交換律。 最有名的非交換例子,就是哈密爾頓發現的四元數群。 但是結合律仍然滿足。
1、乘法交換律:ab=ba,註:字母與字母相乘,乘號不用寫,或者可以寫成「·」。
2、乘法結合律:(ab)c=a(bc)
3、乘法分配律:(a+b)c=ac+bc
㈡ 乘法計算的方法
1、先是高位的進行相乘,這里是十位就十位數上下相乘,具體如圖:
。
㈢ 乘法算式怎麼算
乘法的計演算法則:
(1)數位對齊,從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊;
(2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0)
1、首位相同,兩尾數和等於10的兩位數相乘方法: 十位數加1,得出的和與十位數相乘,得數為前積,個位數相乘,得數為後積,沒有十位用0補。
2、首位相同,尾數和不等於10的兩位數相乘方法:兩首位相乘(即求首位的平方),得數作為前積,兩尾數的和與首位相乘,得數作為中積,滿十進一,兩尾數相乘,得數作為後積。
3、被乘數首尾相同,乘數首尾和是10的兩位數相乘方法:乘數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有 十位用0補。
4、被乘數首尾和是10,乘數首尾相同的兩位數相乘方法:與幫助6的方法相似。兩首位相乘的積加上乘數的個位數,得數作為前積,兩尾數相乘,得 數作為後積,沒有十位補0。
㈣ 乘法的運演算法則包括哪些
乘法運算定律:
1、乘法交換律:兩個數相乘,交換兩個因數的位置,積不變。
用字母表示:a×b=b×a。
2、乘法結合律:三個數相乘,先乘前兩個數,或者先乘後兩個數,積不變。
用字母表示:(a×b)×c=a×(b×c)。
3、乘法分配律:兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。
用字母表示:(a+b)×c=a×c+b×c。
(4)計算乘法的方法有哪些擴展閱讀
1、乘法分配律的理解:以上幾個算式應注意利用乘法的意義進行理解: a + b 個 c 等於 a 個 c 加上 b 個 c ,而不能單純地依靠記憶,只有這樣才能在運算中熟練運用,減少失誤。
2、乘法分配律的實質與特點: 實質:利用乘法的意義將算式轉化為整十、整百雀臘亂數的乘法運算。 特點: 兩個積的和或差, 其中兩個積的因數中有一個因數相同; 或兩數的和或差乘一個數。
3、運用乘法交換律、乘法結合律簡化運算的實質與算式特點實質:把其中相乘結果為整十、整百、整千的兩個因數先相乘。通常利用的算式是:2 × 5 = 10 ; 4 × 25 = 100 ; 8 × 125 = 1000 ; 625 × 16 = 10000 ; 25 × 8 = 200 ; 75 × 4 = 300 ; 375 × 8 = 3000。
4、在乘法算式中,當因數中有 25 、 125 等因數,而另外的因數沒有 4 或 8 時,可以考慮 將另外的因數分解為兩個頃檔因數相乘、 其中一個因數為 4 或 8 的形式, 從而利用乘法交換律、 乘法結合律使運算簡化。
5、在乘法算式中,如果其中兩個因數的積為整十、整百、整千數時,可以運用乘法交換 律、乘法結合律來改變運算順序,從而簡化運算。
㈤ 乘法的計算方法有那些
1、乘法分配律公式:(a+b)×c=a×c+b×c
2、乘法結合律公式:(a×b)×c=a×(b×c)
3、乘法交換律公式:a×b=b×a
4、加法結合律公式:(a+b)+c=a+(b+c)
1、乘法是指將相同的數加起來的快捷方式。其運算結果稱為積。從哲學角度解析,乘法是加法的量變導致的質變結果。
2、整數的乘法運算滿足: 交換律, 結合律, 分配律,消去律。隨著數學的發展, 運算的對象從整數發展為更一般群。群中的乘法運算不再要求滿足交換律。 最有名的非交換例子,就是 哈密爾頓發現的 四元數群。 但是結合律仍然滿足。
3、在群上再裝備另一種乘法, 則發展成為「環」, 兩種乘法中的一種可以視為傳統意義上的加法,因此要求滿足分配律和交換律;但是另一種「乘法」卻不要求交換律。在環裡面,我們不再要求消去律成立。 如果這個環有消去律,就叫做 整環。但是對於環來說, 不一定有「 除法」的概念。 如果環有除法的話,就叫做「域」。域是最接近我們平時所說的有理數集合的東西。 但是它包含了更多信息。
㈥ 乘法除了連加法、簡便法和珠演算法,還有那些方法
求幾個相同加數的和,用(乘)法計算比較簡單。
乘法:求兩個數乘積的運算。
1、乘法的含義
乘法是求幾個相同加數連加的和的簡便演算法。如:計算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.
2、乘法算式的寫法和讀法
⑴連加算式改寫為乘法算式的方法。求幾個相同加數的和,可以用乘法計算。寫乘法算式時,可以用乘法計算。寫乘法算式時,可以先寫相同的加數。
然後寫乘號,再寫相同加數的個數,最後寫等號與連加的和;也可以先寫相同加數的個數,然後寫乘號,再寫相同加數,最後寫等號與連加的和。
如:4+4+4=12改寫成乘法算式是4×3=12或3×4=12
⑵乘法算式的讀法。讀乘法算式時,要按照算式順序來讀。如:6×3=18讀作:「6乘3等於18」。
㈦ 小學數學乘法運算技巧大全,有哪些方法
一、分組湊數
例1:152+637+248+72+28-137
=(152+248)+(637-137)+(72+28)
=400+500+100
=1000
二、拆數湊整
例2:1999+198+97+8
=1999+198+97+(1+2+3+2)
=(1999+1)+(198+2)+(97+3)+2
=2000+200+100+2
=2302
三、分解湊整
例3:125×25×32
=125×25×(8×4)
=(125×8)×(25×4)
=1000×100
=100000
(7)計算乘法的方法有哪些擴展閱讀
運算定律
1、加法交換律:在兩個數的加法運算中,交換兩個加數的位置,和不變。字母表示:
a+b=b+a
2、加法結合律:三個數相加,先把前兩個數相嘩粗加,再加另一個加數;或者先把後兩個數相加,再加另一個加數,和不變。字母表示:
(a+b)+c=a+(b+c)
3、乘法交換律:兩個數相乘的乘法運算中,交換兩個乘數的位置,積不變。字母表示:
a×b=吵陸b×a
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,積不變。字母表升蘆頃示:
(a×b)×c=a×(b×c)
㈧ 口算乘法的計算方法
口算乘法的計算方法如下:
(1)兩位數乘一位數(進位)的口算方法:先把兩位數分成一個( 整十 )數和一個( 一位 )數,再分別與一位數相( 乘 ),最後把兩次乘得的積相( 加 )。
(2)兩位數乘整十、整百數(不進位)的方法:先把( 0)前面的數相乘,再看兩個乘數末尾一共有幾個( 0),就在積的末尾添上幾個( 0)。
a、用小棒擺:3個兩捆是6捆,是60。
b、20+20+20=60。
c、2個十乘3是6個十,是60。
d、先算2乘3得6,再在6的後面添上一個0。
師:同學們真能行,想出了這么多的好辦法。你最喜歡哪一種呢?
(3)現在學會了20×3=60,你會不會算200×3呢?20xx×3呢?
(4)仔細觀察這三個算式,它們有什麼相同的地方?
生:一個乘數是一位數,另一個乘數是整十、整百、整千數。
師:這就是我們今天要研究的內容「整十、整百、整千數乘一位數」。
㈨ 數學乘法快速計算方法
數學乘法快速計算方法有6點:
1、十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。
2、頭相同,尾互補(尾相加等於10);
6、十幾乘任意數:口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。
如果遇到有一個數尾數是5的時候,就要注意方法,可以分成兩類,一類是奇數乘以尾數為5的十位數,另一類是偶數乘以尾數為5的十位數。