❶ 一個n階方陣a可逆的定義是什麼通常有幾種方法求矩陣的逆矩陣
n 階方陣 A 可逆的定義是:存在 n 階方陣 B 使 AB = E ,B 叫 A 的逆矩陣,
記作 B = A^-1 。
求方陣 A 的逆矩陣的方法主要碧虛有:
1、A^-1 = 1/|A|·A*,其中 A* 是 A 的伴隨矩陣。
2、在 A 的右側拼接一個同階的單位矩陣,(A E),然後進行行初等變換,
把前面的 A 化為 E ,後面的就是 A^-1 。
通常就這兩種吧。如果 A 很特殊,應該還有簡單的方法,如臘帆二階方陣求逆,只須主對角交換,副對角交輪慧雹換取相反數,再除以行列式;對角陣直接取對角元素的倒數;正交陣直接轉置等。
❷ 求逆矩陣的三種方法
求逆矩陣的3種方法為:伴隨矩陣法、初等變換法和待定系數法。
1、伴隨矩陣,是一個由一個代數餘子式組成的矩陣,該矩陣有一個矩陣組成。
2、待定系數法,顧名思義就是對未知數進行求解。用一個新的包含未定因子的多項式來表達多項式,從而獲得一個恆等式。接著,利用恆等式的特性,推導出一類系數必須滿足的方程或方程,再由方程組或方程組得到待確定的系數,或確定各系數之間的對應關系,稱為待定系數法。
3、矩陣的初等變換可以看成是一個方程組的方程之間兩兩消去的過程。從初中解二、三、四元一次方程的過程來看,消去的過程對方程的解沒有任何影響,事實上,消去前和後的方程組都是等效的,而且它們之間的關系也是一樣的。
逆矩陣
設A是一個n階矩陣,若存在另一個n階矩陣B,使得:AB=BA=E,則稱方陣A可逆,並稱方陣B是A的逆矩陣。A與B的地位是平等的,故A、B兩矩陣互為逆矩陣,也稱A是B的逆矩陣。零矩陣是不可逆的,即取不到B,使OB=BO=E。
若矩陣A是可逆的,則A的逆矩陣是唯一的,並記作A的逆矩陣為A-1。對n階方陣A,若r(A)=n,則稱A為滿秩矩陣或非奇異矩陣。任何一個滿秩矩陣都能通過有限次初等行變換化為單位矩陣。滿秩矩陣A的逆矩陣A可以表示成有限個初等矩陣的乘積。
以上內容參考:網路——逆矩陣
❸ 求可逆矩陣的方法
1、公式法:
(3)a的可逆簡便方法擴展閱讀:
可逆矩陣的性質:
1、可逆矩陣一定是方陣。
2、如果矩陣A是可逆的,其逆矩陣是唯一的。
3、A的逆矩陣的逆矩陣還是A。記作(A-1)-1=A。
4、可逆矩陣A的轉置矩陣AT也可逆,並且(AT)-1=(A-1)T(轉置的逆等於逆的轉置)。
5、若矩陣A可逆,則矩陣A滿足消去律。即AB=O(或BA=O),則B=O,AB=AC(或BA=CA),則B=C。
6、兩個可逆矩陣的乘積依然可逆。
7、矩陣可逆當且僅當它是滿秩矩陣。
❹ 求逆矩陣的簡便方法
求逆矩陣的簡便方法如下:
1、待定系數法。
2、伴隨矩陣求逆矩陣。
3、初等變換求逆矩陣。
待定系數法,一種求未知數的方法。將一個多項式表示成另一種含有待定系數的新的形式,這樣就得到一個恆等式。然後根據恆等式的性質得出系數應滿足的方程或方程組,其後通過解方程或方程組便可求出待定的系數,或找出某些系數所滿足的關系式。
1,2,1,0,-1,-3,0,1。然後進行初等行變換。依次進行第1行加到第2行,得到1,2,1,0,0,-1,1,1。第2行×2加到第1行,得到1,0,3,2,0,-1,1,1。第2行×(-1),得到1,0,3,2,0,1,-1,-1。