導航:首頁 > 知識科普 > 怎麼數學演算方法

怎麼數學演算方法

發布時間:2023-05-21 11:41:40

❶ 數學速算方法有哪些

一、充分利用五大定律

教師要扎實開展好現行教材四年級數學下冊中計算的五大運算定律的教學(加法交換律、加法結合律、乘法交換律、乘法結合律、乘法分配律),引導學生弄清來龍去脈,不讓一個學生掉隊,訓練每個學生能自覺運用簡便辦法,能針對不同題型靈活選擇簡便方法正確而快捷地進行計算。

二、巧妙運用首同末合十

利用首同末合十的方法來訓練。首同末合十法是兩個兩位數,它們的十位數相同,而個位數相加的和是10。利用首同末合十的兩個兩位數相乘,積的右邊的兩位數正好是個位數的乘積,積的左面的數正好是十位上的數乘以比它大1的積,合並起來就是它們的乘積。例如,54x56=3024,81x89=7209。

三、留心左右兩數合並法

任意的兩位數乘上99或任意的三位數乘上999的速演算法叫做左右兩數合並法。

1、任意兩位數乘上99的巧算方法是,將這個任意的兩位數減去1,作為積的左面的兩位數字,再將100減去這個任意兩位數的差作為積的右邊兩位數,合並起來就是它們的積。例如,62x99=6138,48x99=4752。

2、任意三位數乘上999的巧算方法,就是將這個任意的三位數減去1,作為積的左面的三位數字,再將1000減去這個任意三位數的差作為積的右邊的三位數字,合並起來就是它們的積。例如,781x999=780219,396x999=395604。

四、利用分數與除法的關系來巧算

在一個只有二級運算的題里,按順序計算需要多步計算,利用乘除法的關系進行計算就會簡便。比如,

24/18x36/12=(24/18)x(36/12)=24/18x36/12=4。

五、利用擴大縮小的規律進行簡算

有些除法計算題直接計算比較繁瑣,而且容易算錯,利用擴縮規律進行合理的變形可以找到簡便的解決方法。比如,

7/25=(7x4)/(25x4)=28/100=0.28,

24/125=(24x8)/(125x8)=192/1000=0.192。

❷ 數學驗算是怎麼驗算的

數學驗算方法如下此高:

在減法驗算中,我們可以用被減數減去差進行驗算。我們還可以用差加減數進行驗算。在加法運算中,我們可以使用顛倒兩衡轎個加數的位置進行驗算。我們還可以使用和減去其中咐扒肆一個加數的方式進行驗算。

數學驗算的例子:

1、加法用減法驗算,例如17+8=25,驗算25-8=17。

2、加法用乘法驗算,例如15+15+15=45,驗算15X3=45。

3、減法用加法驗算,例如87-19=68,驗算68+19=87。

4、減法用加減混合驗算,例如54-18=36,驗算36+20-2=56-2=54。

5、加法用加減混合驗算,例如79+89=168,驗算168-90+1=78+1=79。

❸ 數學簡便計算,有哪幾種方法

簡便計算主要有三大方法,分別是加減湊整、分組湊整、提公因數法。

它採用數學計算中的拆分湊整思想,通過四則運算規律,從而簡化計算。

就像68+77=?

大多數人不一定立刻能算出結果,

如果換成70+75=?

相信每一個人都可以一口算出和是145。

這里其實就是把77拆分成2+75,

68+77

=68+2+75

=70+75

=145

遇見復雜的計算式時,

先觀察有沒有可能湊整,

湊成整十整百之後再進行計算,

不僅簡便,而且避免計算出錯。

①加減湊整

【例題1】999+99+29+9+4=?

題中999,99,29,9這四個數字與整數1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把這4個1補到999,99,29,9上,原式就可以簡化成:

999+99+29+9+4

=999+99+29+9+1+1+1+1

=999+1+99+1+29+1+9+1

=1000+100+30+10

=1140

【例題2】5999+499+299+19=?

看完例1,再來看看例2,還是末位都是9,自然要用我們的湊整法了,不過稍有不同,因為例2中沒有4來拆分成1+1+1+1。

沒有槍沒有炮,自己去創造!

先把它加上1+1+1+1,然後再減去4,不就相當於式子加了一個0嗎?

5999+499+299+19

=5999+1+499+1+299+1+19+1-4

=6000+500+300+20-4

=6816

②分組湊整

在只有加減法的計算題中,將算式中的各項重新分下組湊整,也可以使計算非常方便。

【例題3】100-95+92-89+86-83+80-77=?

題目中的兩位數加減混合運算,硬算是非常費勁的,但是似乎又不能拆分湊整,再觀察題目可以發現從第2個數95起,後面的數都比前一個小3。

根據加法減法運算性質,我們給相鄰的項加上括弧。

100-95+92-89+86-83+80-77

=(100-95)+(92-89)+(86-83)+(80-77)

=5+3+3+3

=14

湊整法不僅可以用在加減計算中,乘除加減混合運算也常常會考到。

③提取公因數法

這就需要用到乘法分配律提取公因數,

又稱為提取公因數法。

如果沒有公因數,我們可以採取乘法結合律變化出公因數。

a×b=(a×10)×(b÷10),

a×b÷c=a÷c×b,

a×b×c=a×(b×c)。

【例題4】47.9x6.6+529x0.34=?

很明顯題目中的6.6+3.4=10,我們想辦法湊出一個3.4,這就用到了a×b=(a×10)×(b÷10)。但是即使10湊出來,仍然不能提取公因數來簡便計算,這就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,創造出一個47.9,方便我們提取公因數。

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+(47.9+5)x3.4

=47.9x(6.6+3.4)+17

=496

簡便計算的考察重點在於四則運算規律的靈活運用,方法掌握的基礎上,對於四則運算規律必須牢記在心,才能更好地理解運用。

❹ 數學簡便計算怎麼做

❺ 小學數學12種速算技巧

小學數學12種速算技巧如下:

1、筆算兩位數加法,要記三條,相同數位對齊,從個位加起,個位滿10向十位進。

2、筆算兩位數減法,要記三條,相同數位對齊,從個位減起,個位不夠減從十位退1,在個位加10再減。

3、混合運算計演算法則,在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算,在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減,算式里有括弧的要先算括弧裡面的。

4、四位數的讀法,從高位起按順序讀,千位上是幾讀幾千,百手差位上是幾讀幾百,以此類推,中間有一個0或畢埋皮兩個0隻讀一個「零」,末位不管有幾個0都不讀。

5、四位數寫法,從高位起,按照順序寫,幾千就在千位上寫幾,幾百就在百位上寫幾,以此類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。

6、四位數減法也要注意3條,相同數位對齊,從個位減起,哪一位數不夠減,從前位退1,在本位加10再減。

7、一位數乘多位數乘法法則,從個位起,用一位數依次乘多位數中的每一位數,哪一位上乘得的積滿幾十就向前進幾。

8、除數是一位數的除法法則,從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數,除數除到哪一位,就把商寫在那一位上面,每求出一位商,餘下的數必須比除數小。

9、一個因數是兩位數的乘法法則,先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊,再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊,然後把兩次乘得的數加起來。

10、除數是兩位液指數的除法法則,從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,除到被除數的哪一位就在哪一位上面寫商,每求出一位商,餘下的數必須比除數小。

11、萬級數的讀法法則,先讀萬級,再讀個級,萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字,每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個「零」。

12、多位數的讀法法則,從高位起,一級一級往下讀,讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字,每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。

❻ 數學簡便計算,有哪幾種方法

數學簡便計算方法:

一、運用乘法分配律簡便計算

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

這個方法實際上是運用了乘法分配律,將相同因數提取出來。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

❼ 數學計算技巧方法有哪些

一、結合法

一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。

示例:

計算:19×4×5

19×4×5

=19×(4×5)

=19×20

=380

在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。

二、分解法

一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。

示例:

計算:45×18

48×18

=45×(2×9)

=45×2×9

=90×9

=810

將18分解成2×9的形式,再將括弧去掉,使計算簡便。

加法

a、整數和小數:相同數位對齊,從低位加起,滿十進一。

b、同分母分數:分母不變分子相加。異分母分數:先通分,再相加。

減法

a、整數和小數:相同數位對齊,從低位減起,哪一位不夠減退一當十再減。

b、同分母分數:分母不變,分子相減。分母分數:先通分,再相減。

乘法

a、整數和小數:用乘數每一位上的數去乘被乘數用哪一-位上的數去乘,得數的末位就和哪一位對起,最後把積相加,因數是小數的,積的小數位數與兩位因數的小數位數相同。

b、分數:分子相乘的積作分子,分母相乘的積作分母。能約分的先約分結果要化簡。

除法

a、整數和小數:除數有幾位先看被除數的前幾位,(不夠就多看一位),除到被除數的哪一位,商就寫到哪一位上。除數是小數是,先化成整數再除,商中的小數點與被除數的小數點對齊。

b、甲數除以乙數(0除外)等於甲數除以乙數的倒數。

❽ 數學思想方法的演算方法

既然數學的本質是經驗性與演繹性在實踐基礎上的辯證統一,那麼能否對數學的本質進一步作出哲學概括呢?即用簡潔的語言表達數學的本質,就像拉卡托斯說的「數學是擬經驗的科學」那樣。為此,本文提出,數學是一門演算的科學(其中「演」表示演繹,「算」表示計算或演算法,「演算」表示演與算這對矛盾的對立統一)。在此,必須說明三點:何以如此概括?「演算」能否反映數學研究的特點以及能否反映數學本質的辯證性?
1.何以如此概括?
首先,從理論上講,數學本質是數學觀的一個重要問題,而數學觀與數學方法論是統一的,所以可以通過方法論來分析數學觀。數學認識對象的特殊性決定了數學認識方法的特殊性。這種特殊性表現在,數學研究除了像自然科學那樣僅僅採用觀察、實驗、歸納的方法外,還必須採用演繹法。因此,可以通過研究數學認識方法來反映數學認識的本質。
其次,碧卜從事實上看,數學知識的經驗性表明數學是適應社會實踐需要而產弊慧侍生的,是解決實際問題的經驗積累。社會實踐提出的數學問題都要求給出定量的回答,而要作出定量的回答就必須進行具體的計算,所以計算表徵了數學經驗知識的特點。而對於各種具體的計算方法及其一般概括的「演算法」(包括公式、原理、法則),也都可以用「算」來概括、反映數學知識的經驗性在方法論上的計算或演算法特點。同時,數學知識的演繹性反映數學認識在方法論上的演繹特點,所以,可以用「演」來反映數學知識的演繹性。因此,我們可以用「演算」來反映數學本質的經驗性與演繹性。
第三,為避免概括數學本質的片面性。自從數學分為應用數學與純粹數學以後,許多數學家認為,數學來源於經驗是很早以前的事,現在已經不是了,而是變成一門演繹科學了。而一般人也接受這種觀點。但這樣強調數學的演繹性特點,卻忽視了數學具有經驗性質的一面。為了避免這種片面性,這里特別通過數學方法論來概括和反映數學的本質。
2.「演算」反映了數學研究的特點
數學研究對象的特殊性產生了數學研究特有的問題:計算與證明。它們成為數學研究的兩項主要工作。關於「證明」。數學對象的特殊性使得數學成果不能像自然科學成果那樣通過實驗來證實,而必須通過邏輯演繹來證明,否則數學家是不予承認的。所以,數學家如何把自己的成果表達成一系列的演繹推理(即證明)就成為重要工作。證明成為數學研究工作的重要特點。關於「計算」。數學本身就是起源於計算,即使數學發展到高度抽象理論的今天,也不能沒有計算。數學家在證明一個定理租吵之前,必須經過大量的具體計算,進行各種試驗或實驗,並加以分析、歸納,才能形成證明的思路和方法。只有在這時候,才能從邏輯上進行綜合論證,表達為一系列的演繹推理過程,即證明。從應用數學來看,更是需要大量的計算,所以人們才發明各種計算機。在電子計算機廣泛應用的今天,計算的規模更大了,以致在數學中出現數值實驗。因此,計算成為數學研究的另一項重要工作。
既然「計算與證明」是數學研究的兩項主要工作和特點,那麼「數學是演算的科學」這一概括是否反映出這一特點?「證明」是從一定的前提(基本概念和公理)出發,按照邏輯規則所進行的一種演繹推理。而「演(繹)」正可以反映「證明」這一特點。而「算」顯然更可以直接反映「計算」或「演算法」及其特點。由此可見,「演算」反映了數學研究的計算和證明這兩項基本工作及其特點。
3.「演」與「算」的對立統一反映數學性質的辯證性
首先,從數學發展的宏觀來看。數學史告訴我們,數學起源於「算」,即起源於物體個數、田畝面積、物體長度等的計算。要計算就要有計算方法,當各種計算方法積累到一定數量的時候,數學家就進行分類,概括出適用於某類問題的計算公式、法則、原理,統稱為演算法。所以數學的童年時期叫做算術,它表現為一種經驗知識。當歐幾里得建立數學史上第一個公理系統時,才出現「演繹法」。此後,「演」與「算」便構成了數學發展中的一對基本矛盾,推動著數學的發展。這在西方數學思想史中表現最為突出。大致說來,在歐幾里得以前,數學思想主要是演算法;歐幾里得所處的亞歷山大里亞前期,數學主要思想已由演算法轉向演繹法;從亞歷山大里亞後期到18世紀,數學主要思想再次由演繹法轉向演算法;19世紀到20世紀上半葉,數學主要思想又由演算法轉向演繹法;電子計算機的應用促進了計算數學的發展及其與之交叉的諸如計算流體力學、計算幾何等邊緣學科的產生以及數學實驗的出現。這一切又使演算法思想重新得到發展,成為與演繹法並駕齊驅的思想。可以預言,隨著計算機作為數學研究工具地位的確立,演算法思想將成為今後相當長一個時期數學的主要思想。演算法思想與演繹思想在數學發展過程中的這種更迭替代,從一個側面體現了「演」與「算」這對矛盾在一定條件下的相互轉化。所以,有的數學史工作者從方法論的角度把數學的發展概括為演算法傾向與演繹傾向螺旋式交替上升的過程。
其次,從數學研究的微觀來看。「演」中有「算」,這充分表明了我們上面所分析的「證明」中包含著「計算」,包含著「算」向「演」轉化。「算」中有「演」,這充分表現在算術和代數中。算術和代數表現為「算」,但是,算術和代數的「算」,並不是自由地計算,而是要遵循基本的四則運算及其規律,即計算要按照一定的計算規則,就像證明要遵守推理規則一樣。所以「算」中包含著「演」,包含著「演」向「算」的轉化。「演」與「算」的這種對立統一更充分地體現在計算機的數值計算和定理證明中。這種「算」與「演」的對立統一關系,從一個側面反映了數學的經驗性與演繹性的辯證關系,反映了數學性質的辯證性。
綜上所述,既然「演算」概括了數學研究的特點,反映了數學的經驗性與演繹性及其辯證關系,我們就有理由把它作為對數學本質的概括,說「數學是一門演算的科學」。

❾ 數學簡便計算,有哪幾種方法

一、整體簡便計算。整個一道算式可以用簡便方法計算,這種形式最為常見。例如:
=1.14×10
=11.4
二、局部簡便計算。一道算式中局部可以進行簡便計算,這種形式也不少見。
三、中途簡便計算。開始計算並不能簡便計算,而經過一兩步後卻能進行簡便計算,這種情況最容易忽視。例如:
=1.2×(1+5+4)
=1.2×10
=12
四、重復簡便計算。在一道題里不止一次地進行簡便計算,這種情況往往不注意後一次簡便計算。例如:
=8×55×0.125
=8×0.125×55
第二次
=1×55
=55
一簡算的根據
a、乘法運算定律
b、加法運算定律
c、減法、除法的運算性質
二簡算的類型
a、直接簡算
b、部分簡算
c、轉化簡算
d、過程簡算
三簡算的幾種公式:
加法:a+b+c=a+(b+c)(加法結合律)
乘法:a×b×c=a×c×b(乘法交換律)
a×b×c=a×(b×c)(乘法結合律)
(a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
減法:a-b-c=a-c-b(減法交換律)
a-b-c=a-(b+c)(減法結合律)
除法:a÷b÷c=a÷c÷b(除法交換律)
a÷b÷c=a÷(b×c)(除法結合律)
(a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除數是兩個數的差或和的情況下才能進行分配
希望幫到你
望採納
謝謝
加油

❿ 數學計算技巧方法

一、加一法———頭相同,個位相加之相加之和等於10.
公式:一個頭加「1」後,頭×頭;尾×尾,連起來。
例:62×68=4216
解:(6+1)×6=42 2×8=16 連起來得4216.
練習題:73×77 28×22 64×66 43×47
二、加尾數法——尾相加,十位相加等於10.
公式:頭×頭加一個尾;尾尾連起來
例:26×86=2236
解:2×8+6=22 6×6=36 連起來得2236
練習題:38×78 47×67 85×25 64×44
三、減1法———個位數是1和9且兩個首數相差1.
公式:用較大數的首數平方減去1,後面連寫99.
例:81(較大數)×79=6399
解:82-1=63 後面連寫99,得6399.
練習題:61×59 71×69 29×31 49×51
四、求兩個一百零幾數的積,一數加另一數尾數法。
公式:一數+另一數尾數;尾×尾, 連起來。
例:105×107=11235
解:105+7=112 5×7=35 連起來得11235.
練習題:108×109 106×104 102×108 103×105
一、兩位數乘兩位數。 1.十幾乘十幾: 口訣:頭乘頭,尾加尾,尾乘尾。 例:12×14=? 解:1×1=1 2+4=6 2×4=8 12×14=168 註:個位相乘,不夠兩位數要用0佔位。 2.頭相同,尾互補(尾相加等於10): 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:23×27=? 解:2+1=3 2×3=6 3×7=21 23×27=621 註:個位相乘,不夠兩位數要用0佔位。 3.第一個乘數互補,另一個乘數數字相同: 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:37×44=?
文檔沖億季,好禮樂相隨
mini ipad移動硬碟拍立得網路書包
1 解:3+1=4 4×4=16 7×4=28 37×44=1628 註:個位相乘,不夠兩位數要用0佔位。 4.幾十一乘幾十一: 口訣:頭乘頭,頭加頭,尾乘尾。 例:21×41=? 解:2×4=8 2+4=6 1×1=1 21×41=861 5.11乘任意數: 口訣:首尾不動下落,中間之和下拉。 例:11×23125=? 解:2+3=5 3+1=4 1+2=3 2+5=7 2和5分別在首尾
2 11×23125=254375 註:和滿十要進一。
一、兩位數乘兩位數。 1.十幾乘十幾: 口訣:頭乘頭,尾加尾,尾乘尾。 例:12×14=? 解:1×1=1 2+4=6 2×4=8 12×14=168 註:個位相乘,不夠兩位數要用0佔位。
2.頭相同,尾互補(尾相加等於10): 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:23×27=? 解:2+1=3 2×3=6 3×7=21 23×27=621 註:個位相乘,不夠兩位數要用0佔位。
3.第一個乘數互補,另一個乘數數字相同: 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:37×44=?

閱讀全文

與怎麼數學演算方法相關的資料

熱點內容
書架隔斷最簡單的方法 瀏覽:869
生物老師研究方法有哪些 瀏覽:389
華為手機開關欄設置在哪裡設置方法 瀏覽:108
三星s6的視頻在哪裡設置方法 瀏覽:583
剪刀淋雨生銹了用什麼方法變新 瀏覽:43
輪滑鞋穿大了用什麼方法 瀏覽:876
如何祛風除濕土方法 瀏覽:761
光回損容限與光回損測量方法 瀏覽:936
造房各大建材的計算方法 瀏覽:758
胃臭的治療方法 瀏覽:259
孕婦尿痛怎麼辦最快最有效的方法 瀏覽:71
鼻前庭囊腫治療方法 瀏覽:717
手機粘貼掛鉤安裝方法 瀏覽:695
常用心功能評定方法主要有哪些 瀏覽:410
選礦試驗研究方法習題答案 瀏覽:264
價格評分方法和技巧 瀏覽:257
花盆黃瓜搭架詳細方法圖片 瀏覽:408
win10在哪裡連接網路連接網路設置方法 瀏覽:27
霍香正氣水可以治療腳氣的最佳方法 瀏覽:96
快速減輕胃痛的方法 瀏覽:472