⑴ 分數簡便計算的竅門和技巧
分數計算是小學計算部分的重要部分,也是小升初競賽的常考內容。對於分數的運算,除了掌握常規的運演算法則外,還應該掌握一些特殊的運算技巧,才能提高運算速度,解答較難的問題。今天小升匯總了分數巧算的五大方法,一起來學習吧!
」
分數運算的技巧主要表現在兩方面:一是,所有的整數、小數計算技巧全都可以在分數的巧算上加以應用,例如乘法的運算定律、提取公因式、字母替換等常用方法;二是,分數簡算中獨有的方法,包括分數裂項、整體約分法等。
湊整法
與整數運算中的「湊整法」相同,在分數運算中,充分利用四則運演算法則和運算律(如交換律、結合律、分配律),使部分的和、差、積、商成為整數、整十數...從而使運算得到簡化。
改順序
通過改變分數式中的先後順序,使運算算簡便。常見有以下幾種方法:
01加括弧性質
在一個只有加減法運算的算式中,給算式的一部分添上括弧,如果括弧前面是加號,那麼括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。用字母表示:
a+b-c=a+(b-c)
a-b+c=a-(b-c)
a-b-c=a-(b+c)
02去括弧性質
在一個有括弧的加減法運算的算式中,將算式中的括弧去掉,如果括弧前面是加號,那麼去掉括弧後,括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。用字母表示:
a+(b-c)=a+b-c
a-(b+c)=a-b-c
a-(b-c)=a-b+c
03分數搬家
在連減或加減混合運算中,如果算式中沒有括弧,那麼計算時,可以帶著符號「搬家」,用「字母」表示:
a-b-c=a-c-b
a-b+c=a+c-b
提取公因式
當幾個乘積相加減,而這些乘積中又有相同的因數時,我們可以採用提取公因數的方法進行巧算。如果乘積中另外幾個因數相加減的結果正好湊成整十、整百、整千、整萬的數,或是是一些比較簡單的數,那麼計算就更為簡便。這種方法叫「提取公因數法」。
01簡單提取法
02創造條件法
對於復雜的分數算式,要根據算式特點,進行一定的轉化,創造條件後再運用提取公因數的方法來簡算。
拆數
一組分數混合運算時,為了能夠「湊整」或湊成比較簡單的數,常常需要先把分數中分子或分母進行拆分,再來進行分組運算。這種巧算方法叫「拆分法」,也叫「分解分組法」。
代數法
在相同數字較多的分數式中,用字母表示式子中的一部分,使運算更加方便。這就是分數式中的代數法。
易錯點糾正
「孩子做分數運算題目,有幾個容易犯的錯誤,家長要注意糾正:
🔼 異分母分數相加減:要先通分,化成相同的分母,再加減,計算結果能約分的要約分。
🔼在計算過程中要注意統一分數單位。
🔼 在比較分數與小數大小時,要先統一他們的表現形式。將分數轉化為小數或者將小數轉化為分數。只有表現形式統一了,才有可能比較大小。分數化成小數的方法:用分子除以分母所得的商即可,除不盡時通常保留三位小數。
⑵ 分數的簡便計算方法
分數的簡便計算方法和整數的簡便計算方法一樣。可以用加法的交換律、結合律簡算;也可以用乘法的交換律、結合律和分配率進行簡算。
(1)將分數化成小數,再按小數的乘法法則計算。
如0.21×1/2=0.21×0.5=0.105。
(2)將小數化成分數,再按分數的乘法法則計算。
如0.32×3/5=32/100×3/5=8/25×3/5=24/125。
(3)小數與分子直接相乘,再去小數點化成分數,然後再約分。
如0.24×2/3=0.48/3=48/300=16/100=4/25。
(4)可約分去分母的先約分去分母(分母為1),再小數與整數相乘。
如0.24×2/3=0.08×2/1=0.16。
(3)分數統計簡便運算方法擴展閱讀:
分數加減法
1、同分母分數相加減,分母不變,即分數單位不變,分子相加減,能約分的要約分。
2、異分母分數相加減,先通分,即運用分數的基本性質將異分母分數轉化為同分母分數,改變其分數單位而大小不變,再按同分母分數相加減法去計算,最後能約分的要約分。
乘除法
1、分數乘整數,分母不變,分子乘整數,最後能約分的要約分。
2、分數乘分數,用分子乘分子,用分母乘分母,最後能約分的要約分。
3、分數除以整數,分母不變,如果分子是整數的倍數,則用分子除以整數,最後能約分的要約分。
4、分數除以整數,分母不變,如果分子不是整數的倍數,則用這個分數乘這個整數的倒數,最後能約分的要約分。
5、分數除以分數,等於被除數乘除數的倒數,最後能約分的要約分。
⑷ 分數簡便運算有哪些
分數簡便運算包括但不限於以下幾種:
1、連乘——乘法交換律的應用:
涉及定律:乘法交換律——a×b×c=a×c×b。
基本方法:將分數相乘的因數互相交換,先行運算。
2、乘法分配律的應用:
涉及定律:乘法分配律——(a±b)×c=ac±bc。
基本方法:將括弧中相加減的兩項分別與括弧外的分數相乘,符號保持不變。
3、乘法分配律的逆運算(提取公因數):
涉及定律:乘法分配律逆向定律——a×b±a×c=a(b±c)。
基本方法:提取兩個乘式中共有的因數,將剩餘的因數用加減相連,同時添加括弧,先行運算。
4、添加因數「1」
涉及定律:乘法分配律逆向運算、
基本方法:添加因數「1」,將其中一個數n轉化為1×n的形式,將原式轉化為兩兩之積相加減的形式,再提取公有因數,按乘法分配律逆向定律運算。
5、數字化加式或減式:
涉及定律:乘法分配律逆向運算。
基本方法:將一個大數轉化為兩個小數相加或相減的形式,或將一個普通的數字轉化為整式整百或1等與另一個較小的數相加減的形式,再按照乘法分配律逆向運算解題。
⑸ 所有的數學分數簡便方法(小學的)
分數簡便方法就是5大運算定律和2個性質:
加法交換律A+B=B+A:1/6+4/7+5/6
加法結合律(A+B)+C=A+(B+C):1/6+4/7+5/6+3/7
減法的性質A-B-C=A-(B+C):10-1/6-5/6
乘法交換律A×B=B×A:3/5×8/9×5/3
乘法結合律A×B×C=A×(B×C):3/5×8/9×5/3×9/8
乘法分配律A×(B+C)=A×B+A×C:12×(1/3+3/4)
除法的性質A÷B÷C=A÷(B×C):8/11÷3/5÷5/3
雖然還有很多變式,但都是在以上題目的基礎上變化而來的。
(用公式編輯器錄入的分數貼上不上)
解析:列項相消法是小學中常常涉及對簡便運演演算法則
公式是 1/n(n+1) =1/n -1/(n+1) 例1/12=1/3 -1/4
我給個例題:1-1/2 +1/12 +1/20 +1/30 +1/42 +1/56=?
解答:∵1/12 =1/3-1/4 ,1/20=1/4-1/5 ,1/30= 1/5- 1/6 , 1/42=1/6-1/7 ,1/56=1/7-1/8
∴原式=1-1/2 +1/3-1/4 +1/4-1/5 +1/5- 1/6+1/6-1/7+1/7-1/8 =1-1/2 +1/3 -1/8=5/6-1/8=17/24
其他的有乘法交換律:a×b=b×a 這些基本比較簡單 不做拓展了~
注意:因為你還是小學生 所以這里做下說明 1/n 代表n分之一 ∵是因為的意思 ∴是所以的意思。
13.72×0.25+6.28÷4
=13.72×0.25+6.28×0.25
=(13.72+6.28)×0.25
=20×0.25
=5
一個數乘0.25等於這個數除以4
註:設寬為a分米,長為3a分米
(a+3a)×2=25.6
8a=25.6
a=3.2
寬為3.2分米,長為9.6分米
長方形面積
9.6×3.2=30.72平方分米
小學的數學題簡便方法35—9怎麼做
35—9
=35-10+1
=25+1
=26
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數洞襲胡=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周納攔長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1=
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
約分
240÷40+240÷60
=6+4
=10
長度單位間進率:
1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
面積單位間進率:
1平方千米=1公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
時間單位間的進率:
1年=12個月
平年1年=365天
閏年1年=366天
1個大月=31天
1個小月=30天
平年2月=28天
閏年2月=29天
1天=24小時
1小時=60分
1分=60秒
質量單位間的進率:
1噸=1000千克
1千克=1000克
1:2948+4769
=3000-52+4800-31
=3000+4800-52-31
=7800-83
=7700+100-83
=7700+17
=7717
2:980-495
=980-500+5
=480+5
=485
3:630除以14
=7*90/2*7
=90/2
=45
4:2700除以45再除以2
=2700/(45*2)
=2700/90
=30*90/90
=30
分數化小數分子除以分母,小數化分數看它小數點後有一位分成10分之幾,是二位看成百分之幾!
⑹ 分數簡便運算是什麼
分數簡便運算是用簡便方法計算分數的加減乘除。
例如:
11分之5乘20分之1+11分之3乘2分之1+11分之5乘5分之1
=1/11x1/4+1/11x3/2+1/11x1
=1/11x(1/4+3/2+1)
=1/11x(1/4+6/4+1)
=1/11x11/4
=1/4
分數的乘除法:
1、分數乘整數,分母不變,分子乘整數,最後能約分的要約分。
2、分數乘分數,用分子乘分子,用分母乘分母,最後能約分的要約分。
3、分數除以整數,分母不變,如果分子是整數的倍數,則用分子除以整數,最後能約分的要約分。
4、分數除以整數,分母不變,如果分子不是整數的倍數,則用這個分數乘這個整數的倒數,最後能約分的要約分。
5、分數除以分數,等於被除數乘除數的倒數,最後能約分的要約分。
⑺ 分數簡便運算
分數簡便運算基本上是先通分或者是先約分。
1、要學好分數的計演算法則、定律及性質,其次是掌握一些簡算的技巧:
2、運用運算定律:這里主要指乘法分配律的應用。對於乘法算式中有因數可以湊整時,一定要仔細分析另一個因數的特點,盡量進行變換拆分,從而使用乘法分配律進行簡便計算。
3、充分約分:除了把公因數約簡外,對於分子、分母中含有的公因式,也可直接約簡為1。
進行分數的簡便運算時,要認真審題,仔細觀察運算符號和數字特點,合理進行簡算。需要注意的是參加運算的數必須變形而不變質,當變成符合運算定律的形式時,才能使計算既對又快。分數乘法簡便運算所涉及的公式定律和整數乘法的簡便運算是一樣的,基本上有以下三個:
①乘法交換律;
②乘法結合律;
③乘法分配律;
做題時,要善於觀察,仔細審題,發現數字與數字之間的關系,根據題意來選擇適當的公式或方法,進行簡便運算。
分數簡便運算方法是分子分母約分,化成最簡。意義是讓數字和答案變小,這樣便於計算。
分數,是我們小學階段一個非常重要的知識塊,意義非常重大。關於分數的混合運算題,由於數據復雜、特點不明顯、運算量巨大等等原因,很多學生不容易找到簡便運算的方法、不得其門而入,特別是一些中差生對分數簡便運算一直處於混亂、迷糊的狀態。為此,我將分數的簡便運算方法做了一個歸納,並進行分類匯總,希望能對學生們的學習起到作用。
運用運算定律和性質簡算:運算的定律有加法交換律、加法結合律、乘法交換律、乘法結合律等等。
⑻ 六年級上冊分數簡便運算方法
常用的七種簡便運算方法
1方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
2方法二:結合律法
(一)加括弧法
1. 在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
2.在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
(二)去括弧法 1.在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加。)。
2.在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)
3方法三:乘法分配律法
1.分配法 括弧里是加或減運算,與另一個數相乘,注意分配
2.提取公因式 注意相同因數的提取。
3.注意構造,讓算式滿足乘法分配律的條件。
4方法四:湊整法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難嘛。
5方法四:拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。
6方法五:巧變除為乘
除以一個數等於乘以這個數的倒數。
7方法六:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。 遇到裂項的計算題時,需注意: 1.連續性 2.等差性 計算方法:頭減尾。除公差。
希望能夠幫到您,謝謝,望採納。
⑼ 分數簡便運算有哪些
分數簡便運算有如下:
1、24.6-3.98+5.4-6.02
解析:此題利用加法交換結合律,湊整再計算。步驟如下:
24.6-3.98+5.4-6.02
=(24.6+5.4)-(3.98+6.02)
=30-10
=20
2、27×17/26
解析:此題先用加法分配律,把27轉換成(26+1),再利用乘法結合律,使得運算簡便。
27×17/26
=(26+1)×17/26
=26×17/26+1×17/26
=17+17/26
=17又17/26
3、528-99
解析:利用湊整法和減法結合律計算,先利用湊整法把99變換為(100-1),再運用a-b-c=a-(b+c)來簡便計算,步驟如下:
528-99
=528-(100-1)
=528-100+1
=428+1
=429
4、1.2×2.5+0.8×2.5
解析:運用提取公因數的方法,公式:ac+ab=a(b+c),提取公因數2.5,1.2和0.8相加正好湊整數,使得運算簡便。
1.2×2.5+0.8×2.5
=(1.2+0.8)×2.5
=2×2.5
=5
5、2.96×40
解析:此題先利用乘法分配律,把2.96×40轉換成29.6x4,再利用乘法結合律來簡便計算。
2.96×40
=29.6x4
=(30-0.4)x4
=30×4+0.4×4
=120-1.6
=118.4