A. 到底什麼是配方法,一元二次方程用配方法怎樣解
配方法是指將一個式子(包括有理式和超越式)或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和,這種方法稱之為配方法。這種方法常常被用到恆等變形中,以挖掘題目中的隱含條件,是解題的有力手段之一。
用配方法解一元二次方程的一般步驟:
1、把原方程化為的形式;
2、將常數項移到方程的右邊;方程兩邊同時除以二次項的系數,將二次項系數化為1;
3、方程兩邊同時加上一次項系數一半的平方;
4、再把方程左邊配成一個完全平方式,右邊化為一個常數;
5、若方程右邊是非負數,則兩邊直接開平方,求出方程的解;若右邊是一個負數,則判定此方程無實數解。
例: 解方程:3
(變形:方程左邊分解因式,右邊合並同類項;)
x+4/3=± 5/3(開方:根據平方根的意義,方程兩邊開平方;)
x+4/3=5/3 或 x+4/3=-5/3( 求解:解一元一次方程;)
所以x1=1/3, x2=-3 ( 定解:寫出原方程的解)
(1)配方法怎麼配的口決擴展閱讀
1、配方法解一元二次方程的口訣:一除二移三配四開方。
2、配方法關鍵的一步是「配方」,即在方程兩邊都加上一次項系數一半的平方。
3、配方法的理論依據是完全平方公式。
配方法的應用
1、用於比較大小
在比較大小中的應用,通過作差法最後拆項或添項、配成完全平方,使此差大於零(或小於零)而比較出大小。
2、用於求待定字母的值
配方法在求值中的應用,將原等式右邊變為0,左邊配成完全平方式後,再運用非負數的性質求出待定字母的取值。
3、用於求最值
「配方法」在求最大(小)值時的應用,將原式化成一個完全平方式後可求出最值。
4、用於證明
「配方法」在代數證明中有著廣泛的應用,我們學習二次函數後還會知道「配方法」在二次函數中也有著廣泛的應用.
B. 怎麼配方(數學)
一般解法
1.配方法
(可解全部一元二次方程)
如:解方程:x^2+2x-3=0
解:把常數項移項得:x^2+2x=3
等式兩邊同時加1(構成完全平方式)得:x^2+2x+1=4
因式分解得:(x+1)^2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口訣
二次系數化為一
常數要往右邊移
一次系數一半方
兩邊加上最相當
2.公式法
(可解全部一元二次方程)
首先要通過Δ=b^2-4ac的根的判別式來判斷一元二次方程有幾個根
1.當Δ=b^2-4ac<0時 x無實數根(初中)
2.當Δ=b^2-4ac=0時 x有兩個相同的實數根 即x1=x2
3.當Δ=b^2-4ac>0時 x有兩個不相同的實數根
當判斷完成後,若方程有根可根屬於2、3兩種情況方程有根則可根據公式:x={-b±√(b^2-4ac)}/2a
來求得方程的根
3.因式分解法
(可解部分一元二次方程)(因式分解法又分「提公因式法」、「公式法(又分「平方差公式」和「完全平方公式」兩種)」和「十字相乘法」。
如:解方程:x^2+2x+1=0
解:利用完全平方公式因式分解得:(x+1﹚^2=0
解得:x1=x2=-1
4.直接開平方法
(可解部分一元二次方程)
5.代數法
(可解全部一元二次方程)
ax^2+bx+c=0
同時除以a,可變為x^2+bx/a+c/a=0
設:x=y-b/2
方程就變成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X錯__應為 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
再變成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0
y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]
來自團隊 新蘭史海!
我復制的希望對您有幫助
C. 香料配方萬能公式口訣是什麼
香料配方萬能公式口訣是:【君料】肆喚:【臣料】=2:1,【 臣料】:【佐使純雹纖料】=2:1。
香料按照其重要程度,分成了三個等級,分別是君料,臣料和佐使料。各品級佔比是指【君料】【臣做仿料】【佐使料】各自佔香料總用量的百分比。
其中,放量最多的那幾種香料,被統稱為君料,它們佔到整個香料包重量的58%。其次,放量居中的那幾種香辛料,被統稱為是臣料,佔到整個香料包重量的29%。最後,放量最少的是那幾種香辛料,被統稱為佐使料,佔到整個香料包重量的13%。
配置鹵水的用量
香料:香料的用料是鹵水重量的0.8%-1%,控制在這個配比上的食材鹵制出來沒有過於濃烈的草葯味道,香料真正的起到增香的作用。比如鹵水的重量為1000g,那麼香料的重量總量就是8-10g。
鹽量:鹽的用量是鹵水重量的1.6%-2%之間,比如:1000克高湯配16-20克鹽。如果製作鹵水時使用了醬油、醬料就要減少鹽的用量,醬油的含鹽量約在18%左右,醬料含鹽量約為16%左右,按比例換算出多少克鹽就減少多少克鹽。
D. 二次函數有沒簡單的配方法。最容易記的口訣之類的
初中數學的半邊天是函數,很多初中同學學習函數的時候覺得二次函數是最難的知識,記憶的公式和定理一遇到圖像結合就不知道該怎麼用了。的確,二次函數的圖像與定理公式結合,是一個初中數學的難點,但是一旦掌握這個難點,它馬上會變成黃金技能點,對於同學們解題極有幫助。
為了方便同學們掌握這一知識環節,今天老師就分享一下初中數學二次函數的圖像與性質口訣歌,並結合圖例方便大家理解。
二次函數圖像與性質口訣
二次函數拋物線,圖象對稱是關鍵;
開口、頂點和交點,它們確定圖象限;
開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;
頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;
頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。
若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。
E. 二次函數有沒簡單的配方法。最容易記的口訣之類的
二次函數簡單的配方法:
1、把二次項系數提出來。
2、在括弧內,加上一次項系數一半的平方,同時減去,以保證值不變。
3、這時就能找到完全平方了。然後再把二次項系數乘進來即可。
例題示例如下:
y=3X²-4X+1【原式】
=3(X²-4/3X)+1【提二次項系數】
=3(X²-4/3X+4/9-4/9)+1【加一次項系數平方】
=3(X-2/3)²-4/3+1【乘進二次項系數】
=3(X-2/3)²-1/3【整理】
最簡單的口訣就是記公式,公式整理如下圖:
(5)配方法怎麼配的口決擴展閱讀:
二次函數(quadratic function)的基本表示形式為y=ax²+bx+c(a≠0)。二次函數最高次必須為二次, 二次函數的圖像是一條對稱軸與y軸平行或重合於y軸的拋物線。
配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。
配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。
F. 配方法的基本步驟
1、第一步:把原方程化為一般式
把原方程化為一般形式,也就是aX²+bX+c=0(a≠0)的形式。
2、第二步:系數化為1
把方程的兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊。
3、第三步:把方程兩邊平方
將方程兩邊同時加上一次項系數一半的平方,把左邊配成一個完全平方式,右邊化為一個常數項。
4、第四步:開平方求解
進一步通過直接開平方法求出方程的解,如果右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程有一對共軛虛根。
概述
在基本代數中,配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。
配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。
G. 一元二次方程,配方法
得:
a^2-4a+9=a^2-4a+4-4+9
=(a-2)^2+5
當a=2的時候簡顫值最小畝嘩
所迅咐行以最小值為5
H. 配方法的公式是什麼
配方法是根據完全平方公式:(a+/-b)²=a²+/-2ab+b²得出的。
配方只適用於等式方程,就是把等式通過左右兩邊同時加或減去一個數,使這個等式的左邊的式子變成完全平方式的展開式,再因式分解就可以解方程了。
舉例:
2a²-4a+2=0
a²-2a+1=0(二次項系數要先化為1,方便使用配方法解題,所以等式兩邊同除二次項系數2)
(a-1)²=0(上一步的式子發現左邊是完全平方式,所以根據完全平方公式,將a²-2a+1因式分解為(a-1)²,這樣就完成了配方)
a-1=0(最後等式兩邊同時開平方)
a=1(得到結果)
(8)配方法怎麼配的口決擴展閱讀
配方法的應用
1、用於比較大小:
在比較大小中的應用,通過作差法最後拆項或添項、配成完全平方,使此差大於零(或小於零)而比較出大小。
2、用於求待定字母的值:
配方法在求值中的應用,將原等式右邊變為0,左邊配成完全平方式後,再運用非負數的性質求出待定字母的取值。
3、用於求最值:
「配方法」在求最大(小)值時的應用,將原式化成一個完全平方式後可求出最值。
4、用於證明:
「配方法」在代數證明中有著廣泛的應用,學習二次函數後還會知道「配方法」在二次函數中也有著廣泛的應用。
I. 數學的配方法怎麼配公式是什麼
若x²+kx+n,則配中間項系數一半的平方。就醬。至於後邊的數字,需要幾就加或減幾