導航:首頁 > 知識科普 > 簡便運算的方法和運用

簡便運算的方法和運用

發布時間:2023-04-14 03:19:17

⑴ 簡便運算的技巧和方法四年級

簡便運算的技巧和方法四年級:

1.提取公因式:

這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數,要注意相同因數的提取。

例:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)。

2.借來借去法:

看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。

考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。

例:9999+999+99+9=9999+1+999+1+99+1+9+1—4。

3.加法交換律:兩個加數交換位置,和不變。這叫做加法交換律。

用字母表示:a+b=b+a。

4.加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。這叫做加法結合律。

用字母表示:(a+b)+c= a +( b+c)。

5.乘法交換律:兩個因數交換位置,積不變。這叫做乘法交換律。 用字母表示:a×b=b×a。

6.乘法結合律:三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積不變。這叫做乘法結合律。

用字母表示:(a×b)×c= a ×( b×c)。

7.乘法分配律:兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。這叫做乘法分配律。

用字母表示:

(a+b)×c= a×c+b×c。

a ×( b+c) =a×b+a×c。

8.「湊整」先算,就是將能夠湊成整數的先湊起來算,這種方式一年級的時候就已經學了,也就是湊十法的拓展。

計算:28+54+46

28+54+46

=28+(54+46)

=28+100=128

這樣想:因為54+46=100是個整百的數,所以先把它們的和算出來。

9.改變運算順序:在只有「+」、「-」號的混合算式中,運算順序可改變,這個在後面就叫交換律。現在只要讓孩子理解可以互換就好。這個學校老師也是應該有講的,而且在加減法計算的過程中運用也是比較廣泛。

計算:85-17+18

85-17+18

=85+(18-17)

=85+1

=86

這樣想:把+18帶著符號搬家,搬到-17的前面.然後先算18-17=1。

10.拆分法和乘法分配律:

這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的時候,要首先考慮拆分。

例:34×9.9 = 34×(10-0.1)。

11.利用基準數

在一系列數中找出一個比較折中的數字來代表這一系列的數字,當然要記得這個數字的選取不能偏離這一系列數字太遠。

例:2072+2052+2062+2042+2083=(2062x5)+10-10-20+21。

⑵ 簡便運算的技巧和方法有哪些

數學簡便計算方法

一、裂項法

分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。

常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。

(1)分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。

(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」。

(3)分母上幾個因數間的差是一個定值。

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、去尾法

在減法計算時,若減數和被減數的尾數相同,先用被減數減去尾數相同的減數,能使計算簡便。

例題

2356-159-256

=2356-256-159

=2100-159

=1941

算式中第二個減數256與被減數2356的尾數相同,可以交換兩個數的位置,讓2356先減256,可使計算簡便。

五、提取公因式法

這個方法實際上是運用了乘法分配律,將相同因數提取出來。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

⑶ 簡便運算的16種運算方法是什麼

一、運用乘法分配律簡便計算

乘法分配律指的是:

例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

(3)簡便運算的方法和運用擴展閱讀:

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。

乘法結合律

乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。

⑷ 簡便運算方法

簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算
乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a
加法交換律
加法交換律用於調換各個數的位置:a+b=b+a
加法結合律
(a+b)+c=a+(b+c)

⑸ 簡便運算的規律和方法

一、什麼是簡便運算

「簡便運算」是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算。



二、簡便運算大全

(一)、交換律(帶符號搬家法)

當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。

例:256+78-56=256-56+78=200+78=278

450×9÷50=450÷50×9=9×9=81

說明:適用於加法交換律和乘法交換律。



(二)、結合律

(1)加括弧法

①當一個計算題只有加減運算又沒有括弧時,我們可以在加號後面直接添括弧,括到括弧里的運算原來是加還是加,是減還是減。但是在減號後面添括弧時,括到括弧里的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。)

例:345-67-33=345-(67+33)=345-100=245

789-133+33=789-(133-33)=789-100=689

②當一個計算題只有乘除運算又沒有括弧時,我們可以在乘號後面直接添括弧,括到括弧里的運算,原來是乘還是乘,是除還是除。但是在除號後面添括弧時,括到括弧里的運算,原來是乘,現在就要變為除;原來是除,現在就要變為乘。(即在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。)

例:510÷17 ÷3=51÷(17×3)=510÷51=10

1200÷48×4=1200÷(48÷4)=1200÷12=100

(2)去括弧法

①當一個計算題只有加減運算又有括弧時,我們可以將加號後面的括弧直接去掉,原來是加現在還是加,是減還是減。但是將減號後面的括弧去掉時,原來括弧里的加,現在要變為減;原來是減,現在就要變為加。(現在沒有括弧了,可以帶符號搬家了哈) (註:去括弧是添加括弧的逆運算)

②當一個計算題只有乘除運算又有括弧時,我們可以將乘號後面的括弧直接去掉,原來是乘還是乘,是除還是除。但是將除號後面的括弧去掉時,原來括弧里的乘,現在就 要變為除;原來是除,現在就要變為乘。(現在沒有括弧了,可以帶符號搬家了哈) (註:去掉括弧是添加括弧的逆運算)

三、乘法分配律

①分配法 括弧里是加或減運算,與另一個數相乘,注意分配。

例:45×(10+2)=45×10+45×2=450+90=540

②提取公因式 注意相同因數的提取。

例:35×78+22×35=35×(78+22)=35×100=3500 這里35是相同因數。

③注意構造,讓算式滿足乘法分配律的條件。

例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500

四、借來還去法

看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。

例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106

五、拆分法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和25,4和25,8和125等。分拆還要注意不要改變數的大小。

例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000

125×88=125×(8×11)=125×8 ×11=1000×8=8000

36×25=9×4×25=9×(4×25)=9×100=900

綜上所述,在四則混合運算中,簡便運算試題的類型不外乎這幾種形式,只要掌握四則混合運算順序,同時掌握好上述簡便演算法,就可以保證計算的時效。

⑹ 簡便計算的竅門和技巧是什麼

1、運用加法的交換律、結合律進行計算。要求學生善於觀察題目,同時要有湊整意識。

如:5.7+3.1+0.9+1.3等。

2、運用乘法的交換律、結合律進行簡算。

如:2.5x0.125x8x4等,如果遇到除法同樣適用,或將除法變為乘法來計算。如:

8.3x67+8.3+6.7等。

3、運用乘法分配律進行簡算,遇到除以一個數,先化為乘以一個數的倒數,再分配。

如:2.5x(100+0.4),還應注意,有些題目是運用分配律的逆運算來簡算:即提取公因數。

如:0.93x67+33x0.93。

4、運用減法的性質進行簡算。減法的性質用字母公式表示:A-B-C=A-(B+C),同時注意逆進行。

如:7691-(691+250)。

5、運用除法的性質進行簡算。除法的性質用字母公式表示如下:A+B+C=A+(BxC),同時注意逆進行,如:736+25+4。

6、接近整百的數的運算。這種題型需要拆數、轉化等技巧配合。

如:302+76=300+76+2,298-188=300-188-2等。

7、認真觀察某項為0或1的運算。

如:7.93+2.07x(4.5-4.5)等。

⑺ 簡便運算的技巧

簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。

主要用三種方法:加減湊整、分組湊整、提公因數法。

他們使用的都是數學計算中的拆分湊整思想。

主要步驟:

①遇見復雜的計算式時,先觀察有沒有可能湊整;

②運用四則運算湊成整十整百之後再進行簡便計算。
2/4
加減湊整法

1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百【例1】;

2、補上一個數,能夠與其他數湊整,最後再減去這個數
分組湊整法

在只有加減法的計算題中,將算式中的各項重新分下組湊整,主要採用兩個公式:G老師講奧數(微)。【例3】

加法結合律:a+b+c=a+(b+c)=(a+b)+c;

減法的性質:a-b-c=a-(b+c)。
提公因數法

使用乘法分配律提取公因數,a x (b±c)=a x b±a x c;

如果沒有公因數,可以根據乘法結合律變化出公因數,詳見【例4】。

a×b=(a×10)×(b÷10),

a×b÷c=a÷c×b,

a×b×c=a×(b×c)。
做簡算,是享受。細觀察,找特點。

連續加,結對子。連續乘,找朋友。

連續減,減去和。連續除,除以積。

減去和,可連減。除以積,可連除。

乘和差,分別乘。積加減,莫慌張,

同因數,提出來,異因數,括弧放。

同級算,可交換。特殊數,巧拆分。

合理算,我能行。

1方法一:帶符號搬家法

當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。

a+b+c=a+c+b

a+b-c=a-c+b

a-b+c=a+c-b

a-b-c=a-c-b

例如:

a×b×c=a×c×b

a÷b÷c=a÷c÷b

a×b÷c=a÷c×b

a÷b×c=a×c÷b)

例如:

2方法二:結合律法

(一)加括弧法

1.在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。

2.在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。

(二)去括弧法

1.在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加。)。

2.在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)。

3方法三:乘法分配律法

1.分配法

括弧里是加或減運算,與另一個數相乘,注意分配

例:8×(12.5+125)

=8×12.5+8×125

=100+1000

=1100

2.提取公因式

注意相同因數的提取。

例:9×8+9×2

=9×(8+2)

=9×10

=90

3.注意構造,讓算式滿足乘法分配律的條件。

例:8×99

=8×(100-1)

=8×100-8×1

=800-8

=792

4方法四:湊整法

看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難嘛。

例:9999+999+99+9

=(10000-1)+(1000-1)+(100-1)+(10-1)

=(10000+1000+100+10)-4

=11110-4

=11106

5方法五:拆分法

拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。

例:32×125×25

=(4×8)×125×25

=(4×25)×(8×125)

=100×1000

=100000

6方法六:巧變除為乘

除以一個數等於乘以這個數的倒數

7方法六:裂項法

分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。

遇到裂項的計算題時,需注意:

1.連續性

2.等差性

計算方法:頭減尾,除公差。

8方法六:找朋友法

例題:

例1:

283+52+117+148

=(283+117)+(52+48)

(運用加法交換律和結合律)。

減號或除號後面加上或去掉括弧,後面數值的運算符號要改變。

例2:

657-263-257

=657-257-263

=400-263

(運用減法性質,相當加法交換律。「帶符號搬家」)

例3:

195-(95+24)

=195-95-24

=100-24

(運用減法性質)

例4:

150-(100-42)

=150-100+42

(去括弧時,括弧前面是減號,括弧裡面的運算符號要變成逆運算)

例5:

(0.75+125)x8

=0.75x8+125x8=6+1000

. (運用乘法分配律))

例6:

( 125-0.25)x8

=125x8-0.25x8

=1000-2

(同上)

例7:

(1.125-0.75)÷0.25

=1.125÷0.25-0.75÷0.25

=4.5-3=1.5。

( 運用除法性質)

例8:

(450+81)÷9

=450÷9+81÷9

=50+9=59.

(同上,相當乘法分配律)

例9:

375÷(125÷0.5)

=375÷125x0.5=3x0.5=1.5.

(運用除法性質)

例10:

4.2÷(0.6x0.35)

=4.2÷0.6÷0.35

=7÷0.35=20

(運用除法性質)

例11:

12x125x0.25x8

=(125x8)x(12x0.25)

=1000x3=3000.

(運用乘法交換律和結合律)

例12:

(175+45+55+27)-75

=175-75+(45+55)+27

=100+100+27=227.

(運用加法性質和結合律)

⑻ 簡便運算的方法有哪些

簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×56、
除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

⑼ 簡便運算的技巧和方法是什麼五年級

簡便運算的技巧和方法是:

1、一般情況下,四則運算的計算順序是:有括弧時,先算,沒有括弧時,先算,再算,只有同一級運算時,從左往右。

2、由於有的計算題具有它自身的特徵,這時運用運算定律,可以使計算過程簡單,同時又不容易出錯。

加法交換律:a+b=b+a加法結合律:(a+b)+c=a+(b+c)。

乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)。

乘法分配律:(a+b)×c=a×c+b×c。

3、注意,對於同一個計算題,用簡便方法計算,與不用簡便方法計算得到的結果相同。我們可以用兩種計算方法得到的結果對比,檢驗我們的計算是否正確。

五年級數學簡便計算方法過程解析。
182×67+67×48
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行。

解題過程:
182×67+67×48

=(182+48)×67

=230×67

=15410

閱讀全文

與簡便運算的方法和運用相關的資料

熱點內容
丁香理化鑒別方法 瀏覽:925
洋甘菊單方精油的使用方法 瀏覽:586
簡單紅包燈籠製作方法 瀏覽:821
菠蘿蜜最簡單種植方法 瀏覽:962
空調保溫粘棉方法圖片 瀏覽:872
高考物理數學常用方法 瀏覽:153
微鯨電視掛牆安裝方法視頻 瀏覽:563
廢物手工花盆的製做方法圖片 瀏覽:651
預制構件有哪些吊用方法 瀏覽:895
大學生擇業期計算方法 瀏覽:731
研究心理學的基本原則和主要方法 瀏覽:617
自來水前置過濾器安裝方法圖解 瀏覽:649
奶推是怎麼操作方法圖 瀏覽:481
三七花如何食用方法 瀏覽:956
唱歌教學法屬於哪種教學方法 瀏覽:801
新小米筆記本電腦使用方法 瀏覽:670
烤羊肉串最簡單的方法步驟 瀏覽:868
促進規則學習的有效教學方法 瀏覽:972
掛鎖怎麼開的方法介紹 瀏覽:514
五金篩選機檢測方法 瀏覽:255