❶ 數學中都有什麼演算法啊
定義法、配方法、待定系數法、換元法、反證法、數學歸納法、導數法、賦值法、消去法、定比分離法、比較法、分析法、綜合法 ,還有很多桑
介里有幾個比較詳細的哈.
一、換元法
「換元」的思想和方法,在數學中有著廣泛的應用,靈活運用換元法解題,有助於數量關系明朗化,變繁為簡,化難為易,給出簡便、巧妙的解答.
在解題過程中,把題中某一式子如f(x),作為新的變數y或者把題中某一變數如x,用新變數t的式子如g(t)替換,即通過令f(x)=y或x=g(t)進行變數代換,得到結構簡單便於求解的新解題方法,通常稱為換元法或變數代換法.
用換元法解題,關鍵在於根據問題的結構特徵,選擇能以簡馭繁,化難為易的代換f(x)=y或x=g(t).就換元悄禪冊的具體形式而論,是多種多樣的,常用的有有理式代換,根式代換,指數式代換,對數式代換,三角式代換,反三角式襲肆代換,復變數代換等,宜在解題實踐中不斷總結經驗,掌握有關的技巧.
例如,用於求解代數問題的三角代換,在具體設計時,宜遵循以下原則:(1)全面考慮三角函數的定義域、值域和有關的公式、性質;(2)力求減少變數的個數,使問題結構簡單化;(3)便於藉助已知三角公式,建立變數間的內在聯系.只有全面考慮以上原則,才能謀取恰當的三角代換.
換元法是一種重要的數學方法,在多項式的因式分解,代數式的化簡計算,恆等式、條件等式或不等式的證明,方程、方程組、不等式、不等式組或混合組的求解,函數表達式、定義域、值域或最值的推求,以及解析幾何中的坐標替換,普通方程與參數方程、極坐標方程的互化等問題中,都有著廣泛的應用.
二、消元法
對於含有多個變數啟宏的問題,有時可以利用題設條件和某些已知恆等式(代數恆等式或三角恆等式),通過適當的變形,消去一部分變數,使問題得以解決,這種解題方法,通常稱為消元法,又稱消去法.
消元法是解方程組的基本方法,在推證條件等式和把參數方程化成普通方程等問題中,也有著重要的應用.
用消元法解題,具有較強的技巧性,常常需要根據題目的特點,靈活選擇合適的消元方法
三、待定系數法
按照一定規律,先寫出問題的解的形式(一般是指一個算式、表達式或方程),其中含有若干尚待確定的未知系數的值,從而得到問題的解.這種解題方法,通常稱為待定系數法;其中尚待確定的未知系數,稱為待定系數.
確定待定系數的值,有兩種常用方法:比較系數法和特殊值法.
四、判別式法
實系數一元二次方程
ax2+bx+c=0 (a≠0) ①
的判別式△=b2-4ac具有以下性質:
>0,當且僅當方程①有兩個不相等的實數根
△ =0,當且僅當方程①有兩個相等的實數根;
<0,當且僅當方程②沒有實數根.
對於二次函數
y=ax2+bx+c (a≠0)②
它的判別式△=b2-4ac具有以下性質:
>0,當且僅當拋物線②與x軸有兩個公共點;
△ =0,當且僅當拋物線②與x軸有一個公共點;
<0,當且僅當拋物線②與x軸沒有公共點.
五、 分析法與綜合法
分析法和綜合法源於分析和綜合,是思維方向相反的兩種思考方法,在解題過程中具有十分重要的作用.
在數學中,又把分析看作從結果追溯到產生這一結果的原因的一種思維方法,而綜合被看成是從原因推導到由原因產生的結果的另一種思維方法.通常把前者稱為分析法,後者稱為綜合法.
六、 數學模型法
例(哥尼斯堡七橋問題)18世紀東普魯士哥尼斯堡有條普萊格河,這條河有兩個支流,在城中心匯合後流入波羅的海.市內辦有七座各具特色的大橋,連接島區和兩岸.每到傍晚或節假日,許多居民來這里散步,觀賞美麗的風光.年長日久,有人提出這樣的問題:能否從某地出發,經過每一座橋一次且僅一次,然後返回出發地?
數學模型法,是指把所考察的實際問題,進行數學抽象,構造相應的數學模型,通過對數學模型的研究,使實際問題得以解決的一種數學方法.
七、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式.通過配方解決數學問題的方法叫配方法.其中,用的最多的是配成完全平方式.配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它.
八、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式.因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用.因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等.
九、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法.我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決.
介里LL沒有說很詳細桑,內啥簡便演算法我也一起說了桑丶
乘法交換律,乘法分配律,加法交換律,加法結合律,乘法分配律,
❷ 數學的方法有哪些
1.數形結合思想:就是根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義,使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解體思路,使問題得到解決。
2.聯系與轉化的思想:事物之間是相互聯系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯系,可以相互轉化的。在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。
3.分類討論的思想:在數學中,我們常常需要根據研究對象性質的差異,分各種不同情況予以考查,這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。
4.待定系數法:當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然後解這個方程或方程組就使問題得到解決。
5.配方法:就是把一個代數式設法構造成平方式,然後再進行所需要的變化。配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。
6.換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。
7.分析法:在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然,則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為「執果尋因」
❸ 數學的教學方法有哪些
作為一名老師,除了要有知識能力,注重教學的方式 方法 也是很重要的。有效的 教學方法 可以讓學生事半功倍地學習得更好。下面是我整理的數學的教學方法有哪些,歡迎大家閱讀分享借鑒,希望對大家有所幫助。
更多教學方法相關內容推薦↓↓↓
常見的教學方法有哪些
好的教學方法有哪幾種
教學手段和教學方法的區別
教學方法的種類和手段有哪些
常用的數學教學方法
1.講授法是一種教學方法,教師使用口語來描述情境,敘述事實,解釋概念,論證原則和澄清規則。
2..談話法又稱回答法,是通過教師和學生之間的對話傳播和學習知識的方法。其特點是教師指導學生利用現有的 經驗 和知識回答教師提出的問題,獲取新知識或鞏固和檢查所獲得的知識。
3.討論方法是一種方法,使整個班級或小組圍繞某個中心問題發表自己的意見和看法,共同探索,互相激勵,進行頭腦風暴和學習。
4.演示方法是一種教學方法,教師通過現代教學方法向學生展示物理或物理圖像進行觀察,或通過示範實驗,使學生獲得知識更新。它是一種輔助教學方法,通常與講座,對話,討論等結合使用。
5.練習法是學生在教師指導下鞏固知識,培養各種學習技能的基本方法。這也是學生學習過程中的一項重要實踐活動。
6.實驗法是一種教學方法,學生在教師的指導下使用某些設備和材料,通過操作引起實驗對象的某些變化,並通過觀察這些變化獲得新知識或驗證知識。一種常用於自然科學學科的方法。
7.實習是一種教學方法,學生可以使用某些實習場所,參加某些實習,掌握一定的技能和相關的直接知識,或者驗證間接知識並全面應用所學知識。
數學的教學方法有哪些
一、講授法
講授法講授法是教師運用口頭語言系統地向學生傳授知識的方法。講授法是一種最古老的教學方法,也是迄今為止在世界范圍內應用最廣泛、最普遍的一種教學方法。講授法的基本形式是教師講、學生聽,具體地說,又可以分為講述、講讀、講解三種方式。
講述:教師向學生敘述、描繪事物和現象。
講解:教師向學生解釋、說明、論證概念、原理、公式等。
講讀:教師利用教科書邊讀邊講。
二、談話法
談話法是教師根據學生已有的知識經驗,藉助啟發性問題,通過口頭問答的方式,引導學生通過比較、分析、判斷等思維活動獲取知識的教學方法。談話法的基本形式是學生在教師引導下通過獨立思考進行學習。
三、討論法
討論法是在教師指導下,學生圍繞某個問題發表和交換意見,通過相互之間的啟發、討論、商量獲取知識的教學方法。討論法的基本形式是學生在教師的引導下藉助獨立四、演示法
四、演示法
演示法是一種教學方法,教師通過現代教學方法向學生展示物理或物理圖像進行觀察,或通過示範實驗,使學生獲得知識更新。它是一種輔助教學方法,通常與講座,對話,討論等結合使用。
五、練習法
練習法是學生在教師指導下鞏固知識,培養各種學習技能的基本方法。這也是學生學習過程中的一項重要實踐活動。
怎麼培養學生數學興趣
一、讓活動帶領學生走進數學
興趣是最好的老師,興趣是最大的動力。學生的求知興趣一旦被調動起來,他們就會積極參與,努力探索,專心傾聽的學習習慣是學生主動參與學習過程,提高課堂學習效率的前提,而興趣也是專心傾聽的根本。
二、從生活中發現數學
數學來源於生活。教師要培養學生學會從生活實際出發,從平時看得見、摸得著的周圍實物開始,在具體、形象中感知數學、學習數學、發現數學和實踐數學的興趣。
三、滲透藝術 教育 ,激發學習興趣
調動學生積極性,各抒己見,注重應用。數學學科除了注重培養學生的思維能力以外,千萬不能忽視學生口頭表達的能力。學生學習數學以後,對於知識和應用,大多有各種想法。我們不能認為口頭表達能力訓練是語文課的專利。此時,讓學生多一點發表自己的想法和高見,會對提高學生學習數學的興趣有不容忽視的幫助
數學的教學方法有哪些相關 文章 :
★ 初中數學常用教學方法有哪些
★ 有效的數學教學方法有哪些
★ 數學常用的教學方法有哪些
★ 數學教學方法有哪些
★ 小學數學教學方法有哪些?
★ 數學教學方法有哪些?
★ 數學有哪些常用的教學方法
★ 關於數學教學方法有哪些
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❹ 數學學習方法有哪些
學習數學不僅要有強烈的學習願望和學習熱情,而且還要有科學的學習方法,才可能把數學學好。從分析數學學習活動可知,學習方法既受課堂教學的制約,又具有自身的一些特點。所以,我們一方面提出與課堂教學相配合的學習方法,另一方面又根據數學學習的自身特點,概括出一些特殊的學習方法。
一 預習、聽課、復習、作業的方法與數學課堂教學相適應的學習方法,就是預習、聽課、復習、作業的方法等的基本方法。
1、預習的方法
預習是上課前對即將要上的數學內容進行閱讀,了解其梗概,做到心中有數,以便於掌握聽課的主動權。預習是獨立學習的嘗試,對學習內容是否正確理解,能否把握其重點、關鍵,洞察到隱含的思想方法等,都能及時在聽課中得到檢驗、加強或矯正,有利於提高學習能力和養成自學的習慣,所以它是數學學習中的重要一環。
聽課是學習數學的主要形式。在教師的指導、啟發、幫助下學習,就可以少走彎路,減少困難,能在較短的時間內獲得大量系統的數學知識,否則事倍功半,難以提高效率。所以聽課是學好數學的關鍵
3、復習的方法
復習就是把學過的數學知識再進行學習,以達到深入理解、融會貫通、精煉概括、牢固掌握的目的。復習應與聽課緊密銜接、邊閱讀教材邊回憶聽課內容或查看課堂筆記,及時解決存在的知識缺陷與疑問。對學習的內容務求弄懂,切實理解掌握。如果有的問題經過較長時間的思索,還得不到解決,則可與同學商討或請老師解決。
4、作業的方法
數學學習往往是通過做作業,以達到對知識的鞏固、加深理解和學會運用,從而形成技能技巧,以及發展智力與數學能力。由於作業是在復習的基礎上獨立完成的,能檢查出對所學數學知識的掌握程度,能考查出能力的水平,所以它對於發現存在的問題,困難,或做錯的題目較多時,往往標志著知識的理解與掌握上存在缺陷或問題,應引起警覺,需及早查明原因,予以解決。
❺ 學好數學的方法有哪些
1、培養對數學的興趣。
2、從基礎的數學題做起,逐步建立自信心。
3、勤做題,多練習,大量做題可孰能生巧,做題速度也會越來越快。
4、在做題量逐步增大的過程中,要養成總結歸納的習慣。
5、了解自己的弱項後,可進行專項練習,能夠更加快速提升成績。
6、調整好心態,尤其考數學之前不要過於緊張。
提早「學」的習慣
從小學生認識規律看,要獲得良好的學習成績,必須牢牢抓住預習、聽課、作業、復習四個基本環節。其中,課前預習教材可以幫助學生了解新知識的要點、重點、發現疑難,從而可以在課堂內重點解決,掌握聽課的主動權,使聽課具有針對性。隨著年級的升高、預習的重要性更加突出。
❻ 數學方法有哪些
數學方法即用數學語言表述事物的狀態、關系和過程,並加以推導、演算和分析,以形成對問題的解釋、判斷和預言的方法。所謂方法,是指人們為了達到某種目的而採取的手段、途徑和行為方式中所包含的可操作的規則或模式.人們通過長期的實踐,發現了許多運用數學思想的手段、門路或程序。同一手段、門路或程序被重復運用了多次,並且都達到了預期的目的,就成為數學方法。數學方法是以數學為工具進行科學研究的方法,即用數學語言表達事物的狀態、關系和過程,經過推導、運算與分析,以形成解釋、判斷和預言的方法。
在中學數學中經常用到的基本數學方法,大致可以分為以下三類:
(1)邏輯學中的方法
例如分析法(包括逆證法)、綜合法、反證法、歸納法、窮舉法(要求分類討論)等。這些方法既要遵從邏輯學中的基本規律和法則,又因為運用於數學之中而具有數學的特色。
(2)數學中的一般方法
例如建模法、消元法、降次法、代入法、圖像法(也稱坐標法,在代數中常稱圖像法,在我們今後要學習的解析幾何中常稱坐標法)、比較法(數學中主要是指比較大小,這與邏輯學中的多方位比較不同)、放縮法,以及將來要學習的向量法、數學歸納法(這與邏輯學中的不完全歸納法不同)等.這些方法極為重要,應用也很廣泛。
(3)數學中的特殊方法
例如配方法、待定系數法、消元法、公式法、換元法(也稱之為中間變數法)、拆項補項法(含有添加輔助元素實現化歸的數學思想)、因式分解諸方法,以及平行移動法、翻折法等。這些方法在解決某些數學問題時也起著重要作用。
❼ 數學學習方法有哪些
教學目標要以課程改革為核心,以課題研究為載體,以學生全面發展、教師業務能力不斷提升為目標,以提高課堂教學效率、教學質量、減輕學生課業負擔為根本。
數學是研究現實世世廳猜界數量關系和空間形式的科學,在它產生和發展的歷史長河中,一直是和各種各樣的應用問題緊密相關的。數學的特點不僅在於概念的抽象性、邏輯的嚴密性、結論的明確性和體系的完整性,而且在於它應用的廣泛性。
數學技術:
隨著計算機技術的迅速發搜型展,數學的應用不僅在工程技術、自然科學等領域發揮著越來越重要的作用,而且以空前的廣度和深度向經濟、管理、金融、生物、醫學、環境、地質、人口、交通等新的領域滲透,所謂數學技術已經成為當代高新技術的重要組成部分。
數學伏春模型(Mathematical Model)是一種模擬,是用數學符號、數學式子、程序、圖形等對實際課題本質屬性的抽象而又簡潔的刻畫,它或能解釋某些客觀現象,或能預測未來的發展規律,或能為控制某一現象的發展提供某種意義下的最優策略或較好策略。
❽ 數學教學方法有哪些
數學教學方法如下:
一、自主探究式學習法
自主探索是讓學生自主學習、自主探索、自主研究的一種課堂教學模式,充分體現了學生的主體地位。在新課程標准實施以來在各學科都應用得較為廣泛,且在教學中能更好地激發學生的學習積極性、主動性,讓學生自己去探討新知識的來由並研究其特徵,探索其在實際生活中的應用價值。
鍛練了學生的思維能力、理解能力,增強了學生學好數學的自信心。學生會把自主學習結果看成是一種成功,從而產生一種成就感和喜悅感,激發了學生對整個學習過程的堅強自信心和自主探索、自覺鑽研的興趣,培養創新精神。使學生明白數學中看似深奧的知識,只要積極探索,認真思考就能很快解決。數學來源於生活,又更好地應用於生活。
二、小組討論學習法
這種模式以學生為主,讓學生分組共同協作商量和討論教師提出的問題,與教師形成一種互動的方式,小組討論有利於培養學生集體主義思想,課堂上小組討論有利於在學習數學的過程中分類思想、綜合思維能力、理解能力的培養。
同時也能培養學生與學生、學生與教師相互交流的能力,能增進同學之間、師生之間的感情,通過小組討論可從多角度獲得解題思路和思維途徑,往往是討論和交流融為一體,在討論中理解,在交流中加深印象。這樣可以增強課堂教學效果,比教師直接講授要好得多,對學生的學習起到推動作用,教師也能從中得出意想不到的收獲。
三、發現式學習方法
發現式學習方法是繼自主探索式學習法、小組討論學習法之後的又一種以學生為主體的教學模式和方法,通過閱讀教材來發現新知識、發現新問題、發現新的解題思路和解題方法、發現數學規律、發現學生容易出問題的地方。
這樣學生對新的知識有一種優先掌握的心理,且學生對自己所發現的知識、問題、思路和方法有較深刻的印象,對學生掌握知識很重要,找到了發現知識的渠道。有時候,還可能會使學生突發奇想,象某些數學家一樣提出一些稀奇古怪的數學問題。還會促進學生學習數學的學習積極性,有利於提高課堂教學的質量。
四、演示與表演學習法
演示教學法是數學教學乃至所有學科的教學最基本的、最普遍使用的一種模式。主要是教師演示課堂教學內容和講述新的知識內容。有的教學內容無需學生去進行探究和發現,如定義、概念和公理等。這些內容我們都是直接講述或藉助教學用具進行演示或說明理論知識的形成。
五、寓教於樂的游戲學習法
新版數學教材安排的內容生動有趣,課題就像一個香餑餑,很誘人的。如:有趣的七巧板,日歷中的方程,一百萬有多大等等。
教學內容也變得具有很強的趣味性、游戲性,如:檯球桌面上的角,變化的魚。很多教學內容穿插了游戲內容,如:游戲公平嗎,一定能摸到紅球嗎等等。教材內容更加符合中學生好動好玩的心理特點。利用游戲既可鍛練學生的膽量,調動學生的學習積極性,培養集體主義思想。游戲可以讓學生放鬆學習壓力,以輕松的心情進入學習狀態,從游戲中獲取知識,又把知識運用於游戲之中。
❾ 數學思維的一般方法有哪些
數學思想方法有:函數的思想、分類討論的思想、逆向思考的思想、數形結合思想、函數與方程、化歸與轉化、整體思想、轉化思想、隱含條件思想、極限思想。
3.逆向思考的思想
逆向思維,也稱求異思維,它是對司空見慣的似乎已成定論的事物或觀點反過來思考的一種思維方高指式 ,敢於「反其道而思之」,讓思維向對立面的方向發展,從問題的相反面深入地進行探索,樹立新思想,創立新形象。
4.數形結合思想
數與形是數學中的兩個最古老,也是最基本的研究對象,它們在一定條件下可以相互轉化。中學數學研究的對象可分為數和形兩大部分,數與形是有聯系的,這個聯系稱之為數形結合,或形數結合。
❿ 數學教學法都有哪些方法
常用的數學教學方法有以下六種:
1.講授法是一種教學方法,教師使用口語來描述情境,敘述事實,解釋概念,論證原則和澄清規則。
2.談話法又稱回答法,是通過教師和學生之間的對話傳播和學習知識的方法。其特點是教師指導學生利用現有的經驗和知識回答教師提出的問題,獲取新知識或鞏固和檢查所獲得的知識。
3.討論方法是一種方法,使整個班級或小組圍繞清敬某個中心問題發表自己的意見和看法,共同探索,互相激勵,進行頭腦風暴和學習。
6.實驗法是一種教學方法,學生在教師的指導下使用某些設備和材料,通過操作引起實驗對象的某些變化,並通過觀察這些變化獲得新知識或驗證知識。一種常用於自然科學學科的方法。