⑴ 1加到100等於多少可以用什麼方法計算
1、1加到100等於5050。其實要運用一些簡單的方法來算,1加到100就是相當於50個101,然後直接與之相乘就能夠得到具體的數字了,答案就是5050。
2、高斯求和公式。即等差數列求和,「和=(首項+末項)×項數/2」,所以可以得出(1+100)*100/2=5050。
解:從1加到100的和可以看作是一個公差為1的等差數列,直接利用等差數列的公式(首項+末項)×項數÷2可以很快得出答案。
解:
sn = 1+2+3+4+...+100
= [n*(a1+an)]/2
= 100*(1 + 100)/2
= 5050
得出結果,從1加到100的和等於5050。
(2)從一算到100的簡便方法擴展閱讀:
「4.9+0.1-4.9+0.1」這是小學數學第八冊練習二十七第二題中的一道非常簡單的常見簡便運算題。當我給學生布置了這道題後,我以為學生會毫不猶豫地使用加法交換率和結合率,順利完成此題,但是當我批改學生的作業時,卻發現了以下三種情況:
①、4.9+0.1-4.9+0.1=(4.9-4.9)+(0.1+0.1);
②、4.9+0.1-4.9+0.1=4.9-4.9+0.1+0.1;
③、4.9+0.1-4.9+0.1=(4.9+0.1)-(4.9+0.1)。
⑶ 從1加到100的簡便方法
1+100=101,2+99=101……這樣配對下去,每組都是101。100個數兩個數一組,共100÷2=50組。1~100正好可以分成50對數,每對數的和都相等。可以用等差數列公式,其和是(首項+末項)×項數÷2。1+2+3+……+100=(1+100)×100÷2=5050。
加法(通常用加號「+」表示)是算術的四個基本操作之一,其餘的是減法,乘法和除法。 加法有幾個重要的屬性。 它是可交換的,這意味著順序並不重要,它又是相互關聯的,這意味著當添加兩個以上的數字時,執行加法的順序並不重要。 重復加1與計數相同; 加0不改變結果。 加法還遵循相關操作(如減法和乘法)。
整數加法計演算法則:
相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。
⑷ 1加到100的計算公式是什麼
1加到100的計算公式:(1+100)*100/2=5050。
1加到100公式推導過程:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)+(2+99)+(3+98)+(4+97)+(5+95)+......(47+54)+(48+53)+(49+52)+(50+51)
=101+101+101+101+......+101+101+101+101(共50個101)
=50×101
=5050
因此得到簡便演算法:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)×100÷2
=50×101
=5050
加法算式:加法各部分間的關系就是指兩個加數與和之間的相互關系。
最基本的關系是:加數+加數=和,即:和=加數+加數。
公差d=(an-a1)÷(n-1)(其中n大於或等於2,n屬於正整數)。
項數=(末項-首項來)÷公差+1。
末項=首項+(項數-1)×公差。
前n項的和Sn=首項×n+項數(項數-1)公差/2。
第n項的值an=首項+(項數-1)×公差。
⑸ 一加到100等於幾怎麼算出來的
1加到100公式推導過程:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)+(2+99)+(3+98)+(4+97)+(5+95)+......(47+54)+(48+53)+(49+52)+(50+51)
=101+101+101+101+......+101+101+101+101(共50個101)
=50×101
=5050
因此得到簡便演算法:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)×100÷2
=50×101
=5050
1加到100其實就是一個等差數列的求和,首項=1,末項=100,一共有100項,直接使用公式是最簡單的,和=(首項+末項)×項數÷2。
(5)從一算到100的簡便方法擴展閱讀:
等差數列的其他推導公式:
1、和=(首項+末項)×項數÷2。
2、項數=(末項-首項)÷公差+1。
3、首項=2x和÷項數-末項或末項-公差×(項數-1)。
4、末項=2x和÷項數-首項。
5、末項=首項+(項數-1)×公差。
6、2(前2n項和-前n項和)=前n項和+前3n項和-前2n項和。
⑹ 一到一百怎樣算簡便
一到一百簡便計算可以使用「高斯求和」法
(1+100)×100÷2=5050
操作方法
從1加到100等於5050,演算法為(1+100)+(2+99)+(3+98)+…+(50+51)=50×101=5050。
從1加到100的簡便演算法為對數列進行重新排列,組成50個101的式子(1+100,2+99,3+98…),就可以得到1+2+…+100=50×101=5050,也被稱為高斯求和。