❶ 求平均值的簡單方法
1、平均數=(a1+a2+…+an)/n。
2、算術平均數。
算術平均數是指在一組數據中所有數據之和再除以數據的個數,它是反映數據集中趨勢的一項指標。公式為:平均數=(a1+a2+…+an)/n。
3、加權平均數。
若n個數x1,x2,……xn的權分別為w1,w2,……wn,則這n個數的加權平均數是(X1W1+X2W2+……+XnWn)/(W1+W2+……+Wn)。
平均數非常明顯的優點之一是,它能夠利用所有數據的特徵,而且比較好算。另外,在數學上,平均數是使誤差平方和達到最小的統計量,也就是說利用平均數代表數據,可以使二次損失最小。
因此,平均數在數學中是一個常用的統計量。但是平均數也有不足之處,正是因為它利用了所有數據的信息,平均數容易受極端數據的影響。
算數平均值特殊說明
1、加權算術平均數同時受到兩個因素的影響,一個是各組數值的大小,另一個是各組分布頻數的多少。在數值不變的情況下,一組的頻數越多,該組的數值對平均數的作用就大,反之,越小。
頻數在加權算術平均數中起著權衡輕重的作用,這也是加權算術平均數「加權」的含義。
2、算術平均數易受極端值的影響。例如有下列資料:5、7、5、4、6、7、8、5、4、7、8、6、20,全部資料的平均值是7.1,實際上大部分數據(有10個)不超過7,如果去掉20,則剩下的12個數的平均數為6。由此可見,極端值的出現,會使平均數的真實性受到干擾。
❷ 求平均數的簡便方法
拋磚引玉——求平均數的簡便方法
冀教版第八單元統計第一節課教學平均數。根據求平均數的一般方法得出公式為:總數量÷總份數=平均數。其中求總數量需要把統計的各部分數據加起來,然後再用所的得的和除以總份數就等於平均數。
舉例如下:2003年某市舉辦小學生籃球友誼賽,運動員的身高如下:153 、 138 、153 、 163、 165 、 158 、 166 、 168 、 158 。 (單位:厘米)運動員的平均身高是多少?
基本解法:(153 + 138 +153+ 163+ 165+ 158+ 166 + 168+ 158)÷9
=1422÷9
=158(厘米)
學生試算時,我巡視發現對於較復雜的數據之和的計算過程比較繁瑣,很容易出錯。針對這種情況,我提倡學生用簡便解法,學生有利用加法交換律湊整十整百的,還有的學生把眾多數據中相同的數提出來用乘法計算的,但畢竟不是所有的數據都具備簡算的特徵,所以學生感覺還是計算繁瑣枯燥。那麼有沒有更簡便的計算方法?對於這樣比較大的數據怎樣才能從根本上解決問題呢?首先讓學生觀察數據的特點:每個數都是大於大於100的數,都包含100,
能不能求出後兩位數的平均數,求出的這個平均數與原數的大小有什麼關系?這樣拋磚引玉,引導學生簡便計算如下:
(53 + 38 +53+ 63+ 65+ 58+ 66 + 68+ 58)÷9+100
=522÷9+100
=58+100
=158(厘米)
由此得出對於較復雜的數據求平均數的簡便方法為:求出後幾位數的平均數再加上各原始數據原有的整數部分。
為了加強對這種計算方法的鞏固,課堂上繼續讓學生計算本次期中考試的幾位學生的平均成績,這幾位學生的期中考試的成績分別是93 95 94 99 99 96,學生出現如下計算過程:
(3+5+9+9+6)÷6+90
=36÷6+90
=6+90
=96
對於已經變化了特徵的數字,學生能夠舉一反三,順利解答。同時這種求平均數簡便方法的探索,為學生接觸到負數和以後進一步的學習做了鋪墊。
數學沖浪
6名同學參加踢毽子比賽,王小波在計算平均成績時,忘掉了自己和自己踢的84下,計算結果為平均每人踢了72下。你能算出這6名同學平均每人踢了多少下嗎?
72下是5個人平均每人踢的,那5個同學一共踢72×5=360下,6名同學踢(360+84)下,則這6名同學平均每人踢(72×5+84)÷6=74下。
簡便演算法:84和72都含有整十數70,按前面的簡便方法可以先求出70以外的數的平均數,在加上70就是這6名同學的平均數:(2×5+14)÷6+70=(10+14)÷6+70=24÷6+70=4+70=74