導航:首頁 > 知識科普 > 兩位數簡便運算方法視頻講解

兩位數簡便運算方法視頻講解

發布時間:2023-02-02 13:41:35

❶ 兩位數速算方法與技巧

操作方法
01
首先兩位數和兩位數相乘,第一個數加上第二個數的個位數,相加的數字寫在等號前面,例如13×15=,先在等號下寫18,分別作為百位和十位,即180,作為草稿。

02
其次,就把兩個兩位數的個位數相乘,得到的兩位數作為十位數和個位數,十位上的數字兩次相加,就可以得到正確答案,例如15×13=,5×3得15,15+180得到195。

03
然後,個位數相乘得一位數就簡單一些,例如11×13=,即140+3=143,這樣出錯的概率少一些,也便於口算。

04
還有一種辦法,就是湊整減零,例如11×14=,可以先算10×14得140,再加上1×14得14,兩個相加得154

❷ 兩位數乘兩位數的速算方法,十秒以內算出結果。

我以前沒有接觸到過「兩位數乘兩位數的速算方法」當我查找一些資料後發現了是真的有10秒以內算出結果的速演算法!

當然,這個10秒不是人人都能達到的。只有經過無數次的反復練習,熟練於心,才能脫口而出,說出答案。我編輯了兩個方法,供大家參考!

(一)、任意兩位數相乘三步口演算法

計算公式:ab x cd= ac + adx bc + bd

三步口演算法口訣和步驟:

1、 十位數乘十位數,是百位。(有滿十的加進千位)

2、個位數和十位數交叉相乘積相加,是十位。(有滿十的加進百位)

3、位數乘個位數,是個位。(有滿十的加進十位)

例如口算:11×22=? =242,

1、先10位相乘1×2=200,

2、再交叉相乘的和1×2=20,+,1×2=20,=40,

3、最後個位相乘=2,

這樣就可以讀出來了:=242

這個3步速演算法,比常用的列豎式的方法要快一些,對兩位數加法的基礎要求很熟練,要好好鍛煉想像能力,把這個算式在腦海里,或在眼前,形成列豎式一樣的一幅圖,上下對齊,像寫在黑板上一樣的效果,這樣就能快速提高計算速度了。更多心得,自己開心的去多練習吧!

(二)、兩位數相乘的分類口演算法

(1)、十幾乘十幾 。口訣:頭乘頭,尾加尾,尾乘尾。

例如:13×18=? =234

1、先10位相乘,結果放在百位,1×1=100,(有滿十的進千位)。

2、再尾加尾,結果放在10位,3+8=110,(有滿十的進百位)。

3、最後尾乘尾,結果放在個位,3×8=24,(有滿十的進十位)。

這樣就可以讀出來了:=234

(2)、頭相同,尾和十。(十位數字完全相同,個位數字相加之和等於10)。

口訣:一個頭加1後乘另一頭,尾乘尾。

例如:32×38=? =1216

1、先一個頭加1後乘另一頭,結果放在百位,3+1=4,4×3=1200,(有滿十的進千位)。

2、最後尾乘尾,結果放在個位,2×8=16,(有滿十的進十位)。

這樣就可以讀出來了:=1216

(3)、頭和十,尾相同。(個位數字完全相同,十位數字相加之和等於10)。

口訣:頭乘頭加尾,尾乘尾。

例如:32×72=?= 2304

1、頭乘頭加尾,結果放在百位,3×7+2=2300,(有滿十的進千位)。

2、尾乘尾,結果放在個位,2×2=4,(有滿十的進十位)。

這樣就可以讀出來了:=2304

(4)、第一個乘數和十,另一個乘數數字相同 。

口訣:和十頭加1後乘頭,尾乘尾。

例如:28×66=?=1848

1、和十頭加1後乘頭,結果放在百位,2+1=3,3×6=1800,(有滿十的進千位)。

2、尾乘尾,結果放在個位,8×6=48,(有滿十的進十位)。

這樣就可以讀出來了:=1848

(5)、幾十 一乘幾十 一。

口訣:頭乘頭,頭加頭,尾乘尾。

例如:61×51=?=1581

1、頭乘頭,結果放在百位,3×5=3000,(有滿十的進千位)。

2、頭加頭,結果放在10位,3+5=110,(有滿十的進百位)。

3、尾乘尾,結果放在個位,1×1=1,

這樣就可以讀出來了:=3111

(6)、11乘任意數。

口訣:任意數首尾不動下落,中間之和下拉。

例如:11×5201314=?=57214454

1、首尾不動下落,5(?)4,

2、中間之和下拉,5+2=7,2+0=2,0+1=1,1+3=4,3+1=4,1+4=5,(和滿十要進一)

這樣就可以讀出來了:=57214454

(7)、十幾乘任意數 。

口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。

例如:18×518=?=9324

1、第二乘數首位不動向下落,5(?)

2、第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落,8×5+1=41,8×1+8=16,8×8=64,(和滿十要進一)

這樣就可以讀出來了:=9324

總結一下:

第一種:一招鮮,吃遍天;一指禪,威名楊!好記憶,不怕忘!想要速度快,基礎天天練。

第二種:十八般武藝,樣樣精通!眼疾嘴快腦瓜靈!幾天不用,可能就混淆了。速度想要快,熟記規律天天練!

以上有覺得方便的,有覺得麻煩的,各有所長。看各人練習的程度,和喜歡那種方法。不管那種飛速的方法,離不開天天用心的練習。拳不離手,曲不離口,溫故而知新。

❸ 兩位數乘兩位數有哪些簡便計算

一般兩位數的平方,都可以用這樣的方法來計算:用這個數加它的個位數再乘以它的十位數,將得數乘10,然後加個位數的平方即可。

就是所謂的「本數加其尾,乘頭居首位,為求平方積,再加尾乘尾。」

個位為1、2、3的兩位數的平方計算方法:
對於個位是1、2、3的兩位數,可以用這個數加它的個位數再乘以它的十位數,最後在算出的得數後面添加個位數的平方即可。
例如: 求23的平方,將23加3得26,26再乘2得52,52後面添加3的平方9,即可得529,這就是23平方的得數。
再比如求52的平方,可將52加2得54,再乘以5得270,後面添加2的平方4,即可得2704。
個位是4、6、7、8的兩位數。
這一組兩位數的平方計演算法和第一組兩位數平方的計演算法相似,不同之處是因為這一組兩位數個位的平方均超過10,所以在最後添加個位數的平方時須把它的十位數進到末位那個數,再把它的個位數添列到後面。
例如: 求26的平方,26 6 得 32 ,32×2得 64,因為個位數6的平方是36 ,須將3進到末一位,所以,64 3得67 ,67後面添加6得676,這就是26的平方結果。
再比如求48的平方,48 8 得56 ,56×4得224,224 6 (64的十位數)得 230 ,230後面添加 4 (64的個位數),即得 2304 。
以上演算法看似步驟多些,但都是極易心算的,熟練之後會覺得非常的簡便快捷。
對於個位是 5 的兩位數,當然也可以用上述方法心算,還有一種更簡便的方法: 只須將十位數加1再乘十位數,後邊再添加 25 即可得出結果。
例如求 45 的平方,用4 乘5 (4 1)得 20 ,20 後面添加 25 ,即可得出 2025 ,就是 45 的平方。
再如求 85 的平方,8×9 得 72,後面添加 25 ,即得 7225 。
此法還可用於一些易算的三位數的平方,如求 105 的平方,10×11得 110 ,那麼 105 的平方就是 11025 了; 求205的平方,20×21得 420 ,那麼 205 的平方就是 42025 了。
最後我們來看個位是9的兩位數的平方心演算法。
個位是9的兩位數計算平方時,可用「這個數加1」的平方,減去「這個數加1」的2倍,再加1即可得出結果。
例如求 29 的平方,「 29 1 」的平方是 900 ,減去「 29 1 」的2倍60 ,得數是 840 ,再加1得 841 。
再比如求 59 的平方,60的平方是 3600 ,減去60的2倍得3480,最後加1即得 3481

❹ 兩位數乘兩位數的簡便演算法

兩位數乘兩位數的簡便演算法 .

經總結,兩位數乘兩位數的簡便演算法有很多種。但是,很多都不是萬能的,它們只針對一些有特殊規律的數字。現在,我發現了一種萬能的簡便方法,也即將把它公布於世。
簡便簡便,當然易行,這種方法可歸結為十三個字:「頭乘頭,尾乘尾,尾乘頭加頭乘尾」。整個運算過程都圍繞著這十三個字進行。下面請看我的演算:
例1:23x47=?,我們把2和4分別看為第一個數字和第二個數字的頭,把3和7分別看為第一個數字和第二個數字的尾。這樣,2x4=8, 3x7=21, 2x7+3x4=14+12=26, 然後把21寫在8的後面得到821,再利用小學的列豎式加法運算的方法把26寫在821的下面,且26與82對齊,最後算出結果為1081。
例2:78x78=?,我們把7都看為第一個數字和第二個數字的頭,把8都看為第一個數字和第二個數字的尾。這樣,7x7=49, 8x8=64, 7x8+7x8=56+56=112, 然後把64寫在49的後面得4964,再利用小學的列豎式加法運算的方法把112寫在4964的下面,且112與496對齊,最後算出結果為6084。
例3:23x92=?,我們把2和9分別看為第一個數字和第二個數字的頭,把3和2分別看為第一個數字和第二個數字的尾。這樣,2x9=18, 3x2=6, 2x2+3x9=4+27=31, 在此應該注意,尾乘尾(3x2=6)的結果小於10,因此應在6的前面補一個0後再寫在18的後面,即把06寫在18的後面得到1806,再利用小學的列豎式加法運算的方法把31寫在1806的下面,且31與80對齊,最後算出結果為2116。
經證明,這種方法適合任何兩位數的乘法,故名之曰「萬能」。其實這種方法也適用於其它多位數的乘法,只不過在運算過程中稍有變化而已。

作者郵箱:[email protected]

❺ 兩位數乘兩位數簡便方法

三年級數學一般就要學到兩位數乘兩位數運算,對於中年級的小同學來說,這種運算數字較大,相應的也有了難度,很容易在運算當中出錯,那麼,如何避免出錯,更快速地得出結果呢
這里介紹三種豎式速演算法
這種豎式法,會出現進位,列豎式的時候,一定要注意數位對齊。而後,先用一個乘數個位上的數去乘另一個乘數,得數的末位與乘數的個位對齊,再用這個乘數十位上的數依次去乘另一個乘數,得數的末位與乘數的十位對齊,最後,把兩次所得的結果相加。

這種豎式法的特點,就是容易出現進位,一邊乘一邊還要加。
豎式速演算法
第一步,十位數上下相乘,得數末位與乘數的十位對齊。
第二步,個位數與十位數交叉相乘再把積相加。如這道題當中,4和8相乘得32,5和7相乘得35,32加35就是67。
第三步,個位數進行相乘,得數末位與乘數的個位對齊。這里需要注意一點,如果有進位,就往前一位寫。
最後,把所得的結果進行相加,得出積。

這種方法的特點,是熟練運用以後,可以提高運算的速度。
同樣是列豎式,先用兩個乘數的個位相乘,得數末位與乘數個位對齊。
接下來,兩個乘數的個位與十位交叉相乘,需要兩次,得數末位都與乘數十位對齊。
第四步,兩個乘數的十位相乘,得數末位與乘數百位對齊。
最後,統一相加,得出積。

這種速算方法的特點,是運算當中不需要進位,一目瞭然,更快得到運算的

❻ 兩位數乘兩位數的簡便運算

舉個例子吧,17*18=17*(20-2),大部分都是這樣,你試試

❼ 任意兩個兩位數相乘的簡便演算法

一、兩位數乘兩位數.1.十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾.例:12×14=?解:1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位.2.頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾.例:23×27=?2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位.3.第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾.例:37×44=?3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位.4.幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾.例:21×41=?2×4=82+4=61×1=121×41=8615.11乘任意數:口訣:首尾不動下落,中間之和下拉.例:11×23125=?2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一.6.十幾乘任意數:口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落.例:13×326=?13個位是33×3+2=113×2+6=123×6=1813×326=4238註:和滿十要進一.數學中關於兩位數乘法的「首同末和十」和「末同首和十」速演算法.所謂「首同末和十」,就是指兩個數字相乘,十位數相同,個位數相加之和為10,舉個例子,67×63,十位數都是6,個位7+3之和剛好等於10,我告訴他,象這樣的數字相乘,其實是有規律的.就是兩數的個位數之積為得數的後兩位數,不足10的,十位數上補0;兩數相同的十位取其中一個加1後相乘,結果就是得數的千位和百位.具體到上面的例子67×63,7×3=21,這21就是得數的後兩位;6×(6+1)=6×7=42,這42就是得數的前兩位,綜合起來,67×63=4221.類似,15×15=225,89×81=7209,64×66=4224,92×98=9016.我給他講了這個速算小「秘訣」後,小傢伙已經有些興奮了.在「糾纏」著讓我給他出完所有能出的題目並全部計算正確後,他又嚷嚷讓我教他「末同首和十」的速算方法.我告訴他,所謂「末同首和十」,就是相乘的兩個數字,個位數完全相同,十位數相加之和剛好為10,舉例來說,45×65,兩數個位都是5,十位數4+6的結果剛好等於10.它的計演算法則是,兩數相同的各位數之積為得數的後兩位數,不足10的,在十位上補0;兩數十位數相乘後加上相同的個位數,結果就是得數的百位和千位數.具體到上面的例子,45×65,5×5=25,這25就是得數的後兩位數,4×6+5=29,這29就是得數的前面部分,因此,45×65=2925.類似,11×91=1001,83×23=1909,74×34=2516,97×17=1649.為了易於大家理解兩位數乘法的普遍規律,這里將通過具體的例子說明.通過對比大量的兩位數相乘結果,我把兩位數相乘的結果分成三個部分,個位,十位,十位以上即百位和千位.(兩位數相乘最大不會超過10000,所以,最大隻能到千位)現舉例:42×56=2352其中,得數的個位數確定方法是,取兩數個位乘積的尾數為得數的個位數.具體到上面例子,2×6=12,其中,2為得數的尾數,1為個位進位數;得數的十位數確定方法是,取兩數的個位與十位分別交叉相乘的和加上個位進位數總和的尾數,為得數的十位數.具體到上面例子,2×5+4×6+1=35,其中,5為得數的十位數,3為十位進位數;得數的其餘部分確定方法是,取兩數的十位數的乘積與十位進位數的和,就是得數的百位或千位數.具體到上面例子,4×5+3=23.則2和3分別是得數的千位數和百位數.因此,42×56=2352.再舉一例,82×97,按照上面的計算方法,首先確定得數的個位數,2×7=14,則得數的個位應為4;再確定得數的十位數,2×9+8×7+1=75,則得數的十位數為5;最後計算出得數的其餘部分,8×9+7=79,所以,82×97=7954.同樣,用這種演算法,很容易得出所有兩位數乘法的積.

❽ 四年級兩位數簡便計算有什麼技巧

❾ 兩位數乘兩位數的簡便方法怎麼

兩位數乘兩位數的簡便例子32×25
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
32×25

=8×(4×25)

=8×100

存疑請追問,滿意請採納

閱讀全文

與兩位數簡便運算方法視頻講解相關的資料

熱點內容
普通瑪瑙手串鑒別最簡單方法圖片 瀏覽:472
腫瘤綠色治療技術方法 瀏覽:948
小熊料理機的使用方法 瀏覽:456
右手拇指近節不能彎曲鍛煉方法 瀏覽:661
小胖腿部訓練方法 瀏覽:100
子線與11字環的連接方法 瀏覽:58
小米智能攝像機的連接電視方法 瀏覽:458
中耳炎怎麼方法檢查出來的 瀏覽:259
盆景製作方法怎麼打理 瀏覽:127
油泵齒條行程測量方法 瀏覽:821
胳膊肘鍛煉方法 瀏覽:940
活魚袋安裝方法 瀏覽:523
治療股骨頭康復的方法 瀏覽:409
如何diy寶寶棉鞋方法圖解 瀏覽:358
海竿連接魚鉤方法 瀏覽:411
薑汁沉澱問題解決方法 瀏覽:508
居住用地土壤檢測方法和標准 瀏覽:7
受賄罪的研究方法 瀏覽:609
美安鈣粉使用方法兒童 瀏覽:306
水平安裝接地體的方法 瀏覽:961