⑴ 奧數中的巧算速算方法
巧算公式
乘法:分配律=ac+ab=a(b+c)
結合律=abc=a(bc)
交換律=ab=ac
積不變性質=ab=(a÷c)×(bc)(c≠0)
加法:結合律=a+b+c=a+(b+c)
交換律=a+b=b+a
除法:a÷b÷c=a÷(b×c)(b≠0,c≠0)
商不變性質=a÷b=(a×d)÷(b×d)(b≠0,d≠0)=(a÷d)÷(b÷d)(b≠0,d≠0)
減法:a-b-c=a-(b+c)
速算方法
全腦速算是模擬電腦運算程序而研發的快速腦算技術教程,它能使兒童快速學會腦算任意數加、減、乘、除、乘方及驗算。從而快速提高孩子的運算速度和准確率。
全腦速算的運算原理:
通過雙手的活動來刺激大腦,讓大腦對數字直接產生敏感的條件反射作用,達到快速計算的目的。
(1)以手作為運算器並產生直觀的運算過程。
(2)以大腦作為存儲器將運算的過程快速產生反應並表示出。
(1)奧數乘加混合運算簡便計算的方法擴展閱讀
國際奧林匹克競賽的目的是:發現鼓勵世界上具有數學天份的青少年,為各國進行科學教育交流創造條件,增進各國師生間的友好關系。
這一競賽1959年由東歐國家發起,得到聯合國教科文組織的資助;第一屆競賽由羅馬尼亞主辦,1959年7月22日至30日在布加勒斯特舉行,保加利亞、捷克斯洛伐克,匈牙利、波蘭、羅馬尼亞和蘇聯共7個國家參加競賽。
以後國際奧林匹克數學競賽都是每年7月舉行(中間只在1980年斷過一次),參賽國從1967年開始逐漸從東歐擴展到西歐、亞洲、美洲,最後擴大到全世界。2013年參加這項賽事的代表隊有80餘支。美國1974年參加競賽,中國1985年參加競賽。
經過40多年的發展,國際數學奧林匹克的運轉逐步制度化、規范化, 有了一整套約定俗成的常規,並為歷屆東道主所遵循。
國際奧林匹克數學競賽由參賽國輪流主辦,經費由東道國提供;但旅費由參賽國自理。參賽選手必須是不超過20歲的中學生,每支代表隊有學生6人;另派2名數學家為領隊。試題由各參賽國提供,然後由東道國精選後提交給主試委員會表決,產生6道試題。
東道國不提供試題。試題確定之後,寫成英、法、德、俄文等工作語言,由領隊譯成本國文字。主試委員會由各國的領隊及主辦國指定的主席組成。這個主席通常是該國的數學權威。
⑵ 四則混合運算的簡便方法
常見的簡便運算的方法
1.湊整法
運用補充數或分解數的方法湊成整十、整百、整千的數在小數、分數中湊成整數。
例如:9.9 +99.9 +999.9= 10 + 100+1000-0.3
2.拆分法
把算式中的某個數拆分為能夠運算簡便的數。
例如:99×63=(100-1) x63
3.運用積(商)不變的性質
運用積不變的性質變形。
如: 2222×3333 +1111 ×3334
=1111 ×6666+1111 ×3334
=1111 × (6666 + 3334)
=1111 × 10000
= 11110000
4. 轉換運算
根據運算的定義和性質,有時可以用一種運算代替另一種運算。
用乘法代替加法:23 +23 +23 +37=23×3 +37 = 106
用乘法代替除法:1.24×0.25+2.76÷4
=1.24×0.25 +2.76×0.25
=(1.24 +2.76) ×0.25
=4×0.25
=1
用除法代替乘法:3.2×0.125=3.2÷8=0.4
⑶ 數學乘法簡便計算方法技巧
要有六大方法: 「湊整巧算」——運用加法的交換律、結合律進行計算。運用乘法的交換律、結合律進行簡算。 運用減法的性質進行簡算,同時注意逆進行。運用除法的性質進行簡算 (除以一個數,先化為乘以一個數的倒數,再分配)。運用乘法分配律進行簡算。 混合運算(根據混合運算的法則)。 具體解釋:一、「湊整巧算」——運用加法的交換律、結合律進行計算。湊整,特別是「湊十」、「湊百」、「湊千」等,是加減法速算的重要方法。加法交換律 定義:兩個數交換位置和不變,公式:A+B =B+A,例如:6+18+4=6+4+18 加法結合律定義:先把前兩個數相加,或者先把後兩個數相加,和不變。公式:(A+B)+C=A+(B+C),例如:(6+18)+2=6+(18+2) 引申——湊整例如:1.999+19.99+199.9+1999 =2+20+200+2000-0.001-0.01-0.1-1 =2222-1.111 =2220.889 二、運用乘法的交換律、結合律進行簡算。乘法交換律定義:兩個因數交換位置,積不變. 公式:A×B=B×A 例如:125×12×8=125×8×12 乘法結合律定義:先乘前兩個因數,或者先乘後兩個因數,積不變。 公式:A×B×C=A×(B×C), 例如:30×25×4=30×(25×4)三、運用減法的性質進行簡算,同時注意逆進行。減法 定義:一個數連續減去兩個數,可
⑷ 簡便運算的技巧和方法四年級奧數
四年級「簡便計算」掌握的好壞直接影響五六年級數學成績,各種運算定律要牢牢記住,並多加練習。在本單元學習過程中你能碰到的題型,基本都在這里了,請關注李老師,收藏本文,碰到困難題型再來看一看。
文末有「完整電子版」獲取方式!
首先給同學們奉上加、減、乘、除「運算定律」,務必熟記,最好是能全部准確默寫。
加、減、乘、除運算定律
例1:「多加就減,多減就加,少加再加,少減再減」。
例2:帶符號搬家
注意:此方法只能用於只有加減法或只有乘除法時,「帶符號」帶的是數字前面的符號。
例3:減法的性質、帶符號搬家綜合運用
減法的性質:一個數連續減去幾個數,等於這個數減去這幾個減數的和,用字母表示為:a-b-c=a-(b+c)
例4:除法的性質
除法的性質:一個數連續除以幾個數,等於這個數除以這幾個除數的積,用字母表示為:a÷b÷c=a÷(b×c)
例5:去括弧和加括弧
注意:在需要去括弧和加括弧時,如果括弧前面是「+」或「×」,不用變號;如果括弧前面是「-」或「÷」,要變號,「+」變「-」,「-」變「+」,「×」變「÷」,「÷」變「×」。
⑸ 加減混合運演算法簡便運算技巧
加減混合運算簡便方法公式為:
a+b-c。加減混合運算湊成整數來運算是最簡便的方法。加減法混合運算首先算括弧里的,其次是按照先後順序計算。
1、同級運算時,從左到右依次計算。
2、兩級運算時,先算乘除,後算加減。
3、有括弧時,先算括弧裡面的,再算括弧外面的。
4、有多層括弧時,先算小括弧里的,再算中括弧裡面的,再算大括弧裡面的,最後算括弧外面的。
5、要是有乘方,最先算乘方。
6、在混合運算中,先算括弧內的數 ,括弧從小到大,如有乘方先算乘方,然後從高級到低級。
⑹ 簡便運算的規律和方法
一、什麼是簡便運算
「簡便運算」是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算。
二、簡便運算大全
(一)、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
說明:適用於加法交換律和乘法交換律。
(二)、結合律
(1)加括弧法
①當一個計算題只有加減運算又沒有括弧時,我們可以在加號後面直接添括弧,括到括弧里的運算原來是加還是加,是減還是減。但是在減號後面添括弧時,括到括弧里的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②當一個計算題只有乘除運算又沒有括弧時,我們可以在乘號後面直接添括弧,括到括弧里的運算,原來是乘還是乘,是除還是除。但是在除號後面添括弧時,括到括弧里的運算,原來是乘,現在就要變為除;原來是除,現在就要變為乘。(即在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括弧法
①當一個計算題只有加減運算又有括弧時,我們可以將加號後面的括弧直接去掉,原來是加現在還是加,是減還是減。但是將減號後面的括弧去掉時,原來括弧里的加,現在要變為減;原來是減,現在就要變為加。(現在沒有括弧了,可以帶符號搬家了哈) (註:去括弧是添加括弧的逆運算)
②當一個計算題只有乘除運算又有括弧時,我們可以將乘號後面的括弧直接去掉,原來是乘還是乘,是除還是除。但是將除號後面的括弧去掉時,原來括弧里的乘,現在就 要變為除;原來是除,現在就要變為乘。(現在沒有括弧了,可以帶符號搬家了哈) (註:去掉括弧是添加括弧的逆運算)
三、乘法分配律
①分配法 括弧里是加或減運算,與另一個數相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式 注意相同因數的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 這里35是相同因數。
③注意構造,讓算式滿足乘法分配律的條件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借來還去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和25,4和25,8和125等。分拆還要注意不要改變數的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000
125×88=125×(8×11)=125×8 ×11=1000×8=8000
36×25=9×4×25=9×(4×25)=9×100=900
綜上所述,在四則混合運算中,簡便運算試題的類型不外乎這幾種形式,只要掌握四則混合運算順序,同時掌握好上述簡便演算法,就可以保證計算的時效。
⑺ 數學簡便計算,有哪幾種方法
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2