❶ 向量的運算的所有公式
向量的基本運算公式是:
向量的加法OB+OA=OC。a+b=(x+x',y+y')。a+0=0+a=a。向量加法的運算律:交換律:a+b=b+a;結合律:(a+b)+c=a+(b+c)。
向量的減法:如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0。
向量相乘公式:向量a•向量b =|向量a|*|向量b|*cos,設向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。
向量的除法:a÷k=|a|/k*a的單位向量。即結果為原向量的長度縮小k倍後的向量,方向不變。
在數學中,向量(也稱為歐幾里得向量、幾何向量、矢量),指具有大小和方向的量。它可以形象化地表示為帶箭頭的線段。箭頭所指:代表向量的方向;線段長度:代表向量的大小。與向量對應的量叫做數量(物理學中稱標量),數量(或標量)只有大小,沒有方向。
向量的記法:印刷體記作黑體(粗體)的字母(如a、b、u、v),書寫時在字母頂上加一小箭頭「→」。如果給定向量的起點(A)和終點(B),可將向量記作AB(並於頂上加→)。在空間直角坐標系中,也能把向量以數對形式表示,例如xOy平面中(2,3)是一向量。
❷ 向量的運演算法則
向量的加法滿足平行四邊形法則和三角形法則。
向量的加法OB+OA=OC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0
向量的減法
AB-AC=CB. 即「共同起點,指向被
向量的減法減」
a=(x,y)b=(x',y') 則a-b=(x-x',y-y').
3、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當λ>0時,λa與a同方向;
向量的數乘
當λ<0時,λa與a反方向;
向量的數乘當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
註:按定義知,如果λa=0,那麼λ=0或a=0。
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或××反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。
4、向量的數量積
定義:已知兩個非零向量a,b。作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π
定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
向量的數量積的坐標表示:a·b=x·x'+y·y'。 向量的數量積的運算律
a·b=b·a(交換律);
(λa)·b=λ(a·b)(關於數乘法的結合律);
(a+b)·c=a·c+b·c(分配律);
向量的數量積的性質
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。(該公式證明如下:|a·b|=|a|·|b|·|cosα| 因為0≤|cosα|≤1,所以|a·b|≤|a|·|b|)
向量的數量積與實數運算的主要不同點
1、向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。
2、向量的數量積不滿足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。
3、|a·b|≠|a|·|b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
5、向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b(這里並不是乘號,只是一種表示方法,與「·」不同,也可記做「∧」)。若a、b不共線,則a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。
向量的向量積性質:
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a垂直b〈=〉a×b=|a||b|。
向量的向量積運算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
a×(b+c)=a×b+a×c.
註:向量沒有除法,「向量AB/向量CD」是沒有意義的。
❸ 向量的運演算法則
有加法、減法、數乘、數量積、向量積等法則。向量的加法滿足平行四邊形法則和三角形法則;向量的加減乘(向量沒有除法)運算滿足實數加減乘運演算法則。
在數學中,向量(也稱為歐幾里得向量、幾何向量、矢量),指具有大小和方向的量。
它可以形象化地表示為帶箭頭的線段。箭頭所指:代表向量的方向;線段長度:代表向量的大小。與向量對應的量叫做數量(物理學中稱標量),數量(或標量)只有大小,沒有方向。
向量的記法:印刷體記作黑體(粗體)的字母(如a、b、u、v),書寫時在字母頂上加一小箭頭「→」。如果給定向量的起點(A)和終點(B),可將向量記作AB(並於頂上加→)。在空間直角坐標系中,也能把向量以數對形式表示,例如xOy平面中(2,3)是一向量。
在物理學和工程學中,幾何向量更常被稱為矢量。許多物理量都是矢量,比如一個物體的位移,球撞向牆而對其施加的力等等。與之相對的是標量,即只有大小而沒有方向的量。一些與向量有關的定義亦與物理概念有密切的聯系,例如向量勢對應於物理中的勢能。
❹ 向量運演算法則是什麼
①三角形定則:三角形定則主要是將各個向量依次按照首位順序相互連接,最後得出的結果為第一個向量的起點指向最後一個向量的重點,這種解法則是被稱之為三角形定則。
②平行四邊形定則:而平行四邊形定則則是選擇以向量的兩個邊作為平行四邊形,而結果則是作為公共起點的一個對角線,平行四邊形定則還能解決向量的減法。
其中是將向量平移到公共起點上面,然後以向量的兩個邊作為平行四邊形,最終由減向量的重點指向被減向量的重點,而這個平行四邊形定則只是可以用來做兩個非零非共線向量的加減。
相關定義
1、滑動向量
沿著直線作用的向量稱為滑動向量。
2、固定向量
作用於一點的向量稱為固定向量(亦稱膠著向量)。
3、位置向量
對於坐標平面內的任意一點P,我們把向量OP叫做點P的位置向量,記作:向量P。
4、方向向量
直線l上的向量a以及與向量a共線的向量叫做直線l上的方向向量。
❺ 向量的運算的所有公式是什麼
向量的運算的所有公式是:
1、加法:已知向量AB、BC,再作向量AC,則向量AC叫做AB、BC的和,記作AB+BC,即有:AB+BC=AC。
2、減法:AB-AC=CB,這種計演算法則叫做向量減法的三角形法則,簡記為:共起點、連中點、指被減。
3、數乘:實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa。當λ>0時,λa的方向和a的方向相同,當λ<0時,λa的方向和a的方向相反,當λ = 0時,λa=0。
向量代數規則:
1、反交換律:a×b=-b×a。
2、加法的分配律:a×(b+c)=a×b+a×c。
3、與標量乘法兼容:(ra)×b=a×(rb)=r(a×b)。
4、不滿足結合律,但滿足雅可比恆等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
❻ 向量的計演算法則
1、向量的加法
向量的加法
向量的加法滿足平行四邊形法則和三角形法則.
向量的加法OB+OA=OC.
a+b=(x+x',y+y').
a+0=0+a=a.
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c).
2、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0.0的反向量為0
向量的減法
AB-AC=CB.即「共同起點,指向被
向量的減法減」
a=(x,y)b=(x',y') 則a-b=(x-x',y-y').
3、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣.
當λ>0時,λa與a同方向;
向量的數乘
當λ<0時,λa與a反方向;
向量的數乘當λ=0時,λa=0,方向任意.
當a=0時,對於任意實數λ,都有λa=0.
註:按定義知,如果λa=0,那麼λ=0或a=0.
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮.
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或××反方向(λ<0)上縮短為原來的∣λ∣倍.
數與向量的乘法滿足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb).
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b.② 如果a≠0且λa=μa,那麼λ=μ.
4、向量的數量積
定義:已知兩個非零向量a,b.作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π
定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b.若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣.
向量的數量積的坐標表示:a·b=x·x'+y·y'.
向量的數量積的運算律
a·b=b·a(交換律);
(λa)·b=λ(a·b)(關於數乘法的結合律);
(a+b)·c=a·c+b·c(分配律);
向量的數量積的性質
a·a=|a|的平方.
a⊥b 〈=〉a·b=0.
|a·b|≤|a|·|b|.(該公式證明如下:|a·b|=|a|·|b|·|cosα| 因為0≤|cosα|≤1,所以|a·b|≤|a|·|b|)
向量的數量積與實數運算的主要不同點
1、向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.
2、向量的數量積不滿足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.
3、|a·b|≠|a|·|b|
4、由 |a|=|b| ,推不出 a=b或a=-b.
5、向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b(這里並不是乘號,只是一種表示方法,與「·」不同,也可記做「∧」).若a、b不共線,則a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系.若a、b共線,則a×b=0.
向量的向量積性質:
∣a×b∣是以a和b為邊的平行四邊形面積.
a×a=0.
a垂直b〈=〉a×b=|a||b|.
向量的向量積運算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
a×(b+c)=a×b+a×c.
註:向量沒有除法,「向量AB/向量CD」是沒有意義的.
6、三向量的混合積
向量的混合積
定義:給定空間三向量a、b、c,向量a、b的向量積a×b,再和向量c作數量積(a×b)·c,
向量的混合積所得的數叫做三向
量a、b、c的混合積,記作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c
混合積具有下列性質:
1、三個不共面向量a、b、c的混合積的絕對值等於以a、b、c為棱的平行六面體的體積V,並且當a、b、c構成右手系時混合積是正數;當a、b、c構成左手系時,混合積是負數,即(abc)=εV(當a、b、c構成右手系時ε=1;當a、b、c構成左手系時ε=-1)
2、上性質的推論:三向量a、b、c共面的充要條件是(abc)=0
3、(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb)
4、(a×b)·c=a·(b×c)
❼ 向量的加減乘除怎麼算
1、向量的加法:滿足平行四邊形法則和三角形法則,即
(7)向量運算有哪些方法擴展閱讀:
一、向量加法的運算律:
1、交換律:a+b=b+a;
2、結合律:(a+b)+c=a+(b+c)。
3、加減變換律:a+(-b)=a-b
4、向量的加減乘(向量沒有除法)運算滿足實數加減乘運演算法則。
二、向量的數乘規律:
1、向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)²≠a²·b²。
2、向量的數量積不滿足消去律,即:由a·b=a·c(a≠0),推不出b=c。
參考資料來源:網路--向量