Ⅰ 括弧45+4,括弧乘20.怎樣用簡便計算
乘法分配律計算方法,就是把乘數和對象乘式的各部分分配相乘,然後的積再相互做計算加減。
括弧45+4,括弧乘20簡便方法:=45*20+4*20=900+80=980。
Ⅱ 乘法的簡便方法是什麼
一、30以內的兩個兩位數乘積的心算速算
1、兩個因數都在20以內,任意兩個20以內的兩個兩位數的積,都可以將其中一個因數的」尾數」移加到另一個因數上,然後補一個0,再加上兩「尾數」的積。例如:
11×11=120+1×1=121 12×13=150+2×3=156 13×13=160+3×3=169 14×16=200+4×6=224 16×18=240+6×8=288
2、兩個因數分別在10至20和20至30之間對於任意這樣兩個因數的積,都可以將較小的一個因數的「尾數」的2倍移加到另一個因數上,然後補一個0,再加上兩「尾數」的積。例如:
22×14=300+2×4=308
23×13=290+3×3=299
26×17=400+6×7=442
28×14=360+8×4=392
29×13=350+9×3=377
Ⅲ 乘法簡便計算的方法規律
乘法(multiplication),是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。從哲學角度解析,乘法是加法的量變導致的質變結果。整數(包括負數),有理數(分數)和實數的乘法由這個基本定義的系統泛化來定義。
乘法也可以被視為計算排列在矩形(整數)中的對象或查找其邊長度給定的矩形的區域。 矩形的區域不取決於首先測量哪一側,這說明了交換屬性。 兩種測量的產物是一種新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。
乘法是四則運算之一
例如4乘5,就是4增加了5倍率,也可以說成5個4連加。
使用鉛筆和紙張乘數的常用方法需要一個小數字(通常為0到9的任意兩個數字)的存儲或查詢產品的乘法表,但是一種農民乘法演算法的方法不是。
將數字乘以多於幾位小數位是繁瑣而且容易出錯的。發明了通用對數以簡化這種計算。幻燈片規則允許數字快速乘以大約三個准確度的地方。從二十世紀初開始,機械計算器,如Marchant,自動倍增多達10位數。現代電子計算機和計算器大大減少了用手倍增的需要。
3×5表示5個3相加
5x3表示3個5相加。
注意:1.在如上乘法表示什麼中,常把乘號後面的因數做為乘號前因數的倍數。
2.參見wiki中對乘數和被乘數的定義
另:乘法的新意義:乘法不是加法的簡單記法
Ⅰ 乘法原理:如果因變數f與自變數x1,x2,x3,….xn之間存在直接正比關系並且每個自變數存在質的不同,缺少任何一個自變數因變數f就失去其意義,則為乘法。
在概率論中,一個事件,出現結果需要分n個步驟,第1個步驟包括M1個不同的結果,第2個步驟包括M2個不同的結果,……,第n個步驟包括Mn個不同的結果。那麼這個事件可能出現N=M1×M2×M3×……×Mn個不同的結果。
Ⅱ 加法原理:如果因變數f與自變數(z1,z2,z3…, zn)之間存在直接正比關系並且每個自變數存在相同的質,缺少任何一個自變數因變數f仍然有其意義,則為加法。
在概率論中,一個事件,出現的結果包括n類結果,第1類結果包括M1個不同的結果,第2類結果包括M2個不同的結果,……,第n類結果包括Mn個不同的結果,那麼這個事件可能出現N=M1+M2+M3+……+Mn個不同的結果。
以上所說的質是按照自變數的作用來劃分的。
此原理是邏輯乘法和邏輯加法的定量表述。
法則
兩數相乘,同號得正,異號得負,並把絕對值相乘。
運算定律
整數的乘法運算滿足:交換律,結合律, 分配律,消去律。
隨著數學的發展, 運算的對象從整數發展為更一般群。
群中的乘法運算不再要求滿足交換律。 最有名的非交換例子,就是哈密爾頓發現的四元數群。 但是結合律仍然滿足。
1.乘法交換律: ,註:字母與字母相乘,乘號不用寫,或者可以寫成·。
2.乘法結合律: ,
3.乘法分配律: 。
Ⅳ 帶括弧的簡便運算
帶括弧的加減混合題這樣簡便運算:先脫括弧,在利用加法的交換律和結合律 如果有乘法,還要用乘法的交換律和結合律 進行簡便計算。
Ⅳ 帶括弧連減算術怎麼算簡便
帶括弧連減算術簡便運算可以按從左往右按順序計算;
也可以把減數加起來,再從被減數里減去;
還可以先減去後面的減數,再減去前面的。
選擇演算法的依據:根據算式中數據的特點,和使用范圍選擇合適的演算法,以連減的簡便計算為原則。
計算時,如果減去的兩個數能湊成整十數或整百數,那就選擇第二種演算法,減去這兩個數的和;如果減去的一個數後,能得到整十數或整百數,那就運用第三種演算法,交換位置。
舉例:
238-46-54
=238-(46+54)=238-100=138
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2