㈠ 簡便運算方法
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算
乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a
加法交換律
加法交換律用於調換各個數的位置:a+b=b+a
加法結合律
(a+b)+c=a+(b+c)
201×99
=(200+1)x99
=200x99+1x99
=19800+99
=19899
㈢ 用簡便方法計算101×90減九十
用簡便方法計算101×90減九十
101*90-90
=(101-1)*90
=100*90
=9000
㈣ 一百零一乘九十九用三種簡便方法計算
「101*99=?」的三種簡便方法:
① 101*99=(100+1)*99=100*99+99=9999
② 101*99=101*(100-1)=101*100-101=9999
③ 101*99=(100+1)*(100-1)=100*100-1=9999
㈤ 1.5乘1015簡便計算
1.5×105
=1.5×(100+5)
=1.5×100+1.5×5
=150+7.5
=157.5
【中文名】:簡便計算
【最常用的方法】:乘法分配律
【類 型】:一種特殊的計算
【特 色】:運用了運算定律與數字的基本性質
【梗概】:簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
【定律】:
(1)乘法分配律:簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算
(2)乘法結合律:乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
(3)乘法交換律:乘法交換律用於調換各個數的位置:a×b=b×a
(4)加法交換律:加法交換律用於調換各個數的位置:a+b=b+a
(5)加法結合律:(a+b)+c=a+(b+c)
【性質】:
(1)減法1:a-b-c=a-(b+c)
(2)減法2:a-b-c=a-c-b
(3)除法1:a÷b÷c=a÷(b×c)
(4)除法2:a÷b÷c=a÷c÷b
【典型例題】:
(1)210÷7÷6
1035-(497+235)
210÷(7×6)
(2)38×99+38
3500÷14÷5
175×56+25×56
50×25×20×40
(3)999×718+333×666
㈥ 質數有那些
質數有無限個。素數及偽素數通項公式
。
把質數拓展到實數那麼它的切線為:
由切線方程知,素數永遠在斜率3的折線上擺動,最大斜率3+
,最小斜率3。
以下15個區間內質數和孿生質數的統計數。
S1區間1——72,有素數18個,孿生素數7對。(2和3不計算在內,最後的數是孿中的也算在前面區間。)
S2區間73——216,有素數27個,孿生素數7對。
S3區間217——432,有素數36個,孿生素數8對。
S4區間433——720,有素數45個,孿生素數7對。
S5區間721——1080,有素數52個,孿生素數8對。
S6區間1081——1512,素數60個,孿生素數9對。
S7區間1513——2016,素數65個,孿生素數11對。
S8區間2017——2592,素數72個,孿生素數12對。
S9區間2593——3240,素數80個,孿生素數10對。
S10區間3241——3960,素數91個,孿生素數19對。
(6)10159簡便方法計算擴展閱讀:
質數的應用:
質數被利用在密碼學上,所謂的公鑰就是將想要傳遞的信息在編碼時加入質數,編碼之後傳送給收信人,任何人收到此信息後,若沒有此收信人所擁有的密鑰,則解密的過程中(實為尋找素數的過程),將會因為找質數的過程(分解質因數)過久,使即使取得信息也會無意義。
在汽車變速箱齒輪的設計上,相鄰的兩個大小齒輪齒數設計成質數,以增加兩齒輪內兩個相同的齒相遇嚙合次數的最小公倍數,可增強耐用度減少故障。
在害蟲的生物生長周期與殺蟲劑使用之間的關繫上,殺蟲劑的質數次數的使用也得到了證明。實驗表明,質數次數地使用殺蟲劑是最合理的:都是使用在害蟲繁殖的高潮期,而且害蟲很難產生抗葯性。
以質數形式無規律變化的導彈和魚雷可以使敵人不易攔截。
多數生物的生命周期也是質數(單位為年),這樣可以最大程度地減少碰見天敵的機會。
參考資料:網路-質數
㈦ 109x29最簡便計算方法
84x29=84x30-84=2520-84=2520-100+16=2436希望能幫到你,請採納正確答案,點擊【採納答案】,謝謝^_^
㈧ 101乘99的簡便計算方法
101×99
=(100+1)×99
=9900+99
=9999
㈨ 10.1✘9.9用簡便方法計算
原式等於
(10+0.1)(10-0.1)=10平方-0.1平方=99.99
~回答完畢~
~結果僅供參考~
~\(^o^)/~祝學習進步~~~
㈩ 簡便運算的16種運算方法是什麼
一、運用乘法分配律簡便計算
乘法分配律指的是:
例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
(10)10159簡便方法計算擴展閱讀:
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。
乘法結合律
乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。