Ⅰ 配方法的基本步驟
1、第一步:把原方程化為一般式
把原方程化為一般形式,也就是aX²+bX+c=0(a≠0)的形式。
2、第二步:系數化為1
把方程的兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊。
3、第三步:把方程兩邊平方
將方程兩邊同時加上一次項系數一半的平方,把左邊配成一個完全平方式,右邊化為一個常數項。
4、第四步:開平方求解
進一步通過直接開平方法求出方程的解,如果右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程有一對共軛虛根。
概述
在基本代數中,配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。
配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。
Ⅱ 方程的配方法是什麼
配方法:將一元二次方程配成(x+m)^2=n的形式,再利用直接開平方法求解的方法。
①把原方程化為一般形式;
②方程兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊;
③方程兩邊同時加上一次項系數一半的平方;
④把左邊配成一個完全平方式,右邊化為一個常數;
⑤進一步通過直接開平方法求出方程的解,如果右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程有一對共軛虛根。
(2)解方程的根用配方法怎麼解擴展閱讀:
一元二次方程成立必須同時滿足三個條件:
①是整式方程,即等號兩邊都是整式,方程中如果有分母;且未知數在分母上,那麼這個方程就是分式方程,不是一元二次方程,方程中如果有根號,且未知數在根號內,那麼這個方程也不是一元二次方程(是無理方程)。
②只含有一個未知數;
③未知數項的最高次數是2。
Ⅲ 用配方法解方程的詳細步驟是什麼
(1)化二次項系數為1,即方程兩邊同時除以二次項系數.
(2)移項,使方程左邊為二次項和一次項,右邊為常數項.
(3)要在方程兩邊各加上一次項系數一半的平方.(註:一次項系數是帶符號的)
(4)方程變形為
配方法
Ⅳ 怎樣用配方法解方程
配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先將常數c移到方程右邊:ax2+bx=-c
將二次項系數化為1:x2+x=-
方程兩邊分別加上一次項系數的一半的平方:x2+x+( )2=- +( )2
方程左邊成為一個完全平方式:(x+ )2=
當b2-4ac≥0時,x+ =±
∴x=(這就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:將常數項移到方程右邊 3x2-4x=2
將二次項系數化為1:x2-x=
方程兩邊都加上一次項系數一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
直接開平方得:x-=±
∴x=
∴原方程的解為x1=,x2=
Ⅳ 該如何使用配方法解一元二次方程
配方法其實是基於直接開方法,利用開方和的完全平方公式特性來解。完全平方公式是將一個兩項系數的式子的平方變成三項,進行因式分解。用字母表示為:(a+b)²=a²+2ab+b²、(a-b)²=a²-2ab+b²。用配方法解一元二次方程的一般步驟:
(1)把常數項移到等號的右邊;
(2)把二次頂系數化為1;
(3)等式兩邊同時加上一次項系數一半的平方;
(4)運用直接開平方法求得方程的根。
(5)解方程的根用配方法怎麼解擴展閱讀:
當二次項系數不為一時,用配方法解一元二次方程的一般步驟:
1、化二次項系數為1。
2、移常數項到方程右邊。
3、方程兩邊同時加上一次項系數一半的平方。
4、化方程左邊為完全平方式。
5、(若方程右邊為非負數)利用直接開平方法解得方程的根。
Ⅵ 解方程:(用配方法解)(用公式法解)
方程用配方法解一元二次方程,首先將常數項移到等號的右側,將等號左右兩邊同時加上一次項系數一半的平方,即可將等號左邊的代數式寫成完全平方形式;方程用公式法求解方程的根.
,
,
,
,
,
,
解得,.
,,,
,
,
解得,.
配方法的一般步驟:
把常數項移到等號的右邊;
把二次項的系數化為;
等式兩邊同時加上一次項系數一半的平方.
選擇用配方法解一元二次方程時,最好使方程的二次項的系數為,一次項的系數是的倍數.
Ⅶ 解方程(配方法) (公式法)
方程變形配方後,利用平方根的定義開方即可求出解;
找出,,的值,計算出根的判別式大於,代入求根公式即可求出解.
解:方程變形得:,
配方得:,即,
開方得:或,
解得:,;
這里,,,
,
,
解得:,.
此題考查了解一元二次方程-公式法,以及配方法,熟練掌握各種解法是解本題的關鍵.
Ⅷ 用配方法解一元二次方程的基本步驟
將一元二次方程配成,進而得出方程的根。
(4)注意:
①等號左邊是一個數的平方的形式而等號右邊是一個常數。
②降次的實質是由一個一元二次方程轉化為兩個一元一次方程。
③方法是根據平方根的意義開平方。