導航:首頁 > 知識科普 > 聚類方法有哪些

聚類方法有哪些

發布時間:2022-01-18 03:07:45

什麼是聚類分析聚類演算法有哪幾種

聚類分析又稱群分析,它是研究(樣品或指標)分類問題的一種統計分析方法。聚類分析起源於

分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行

定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識

難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又

將多元分析的技術引入到數值分類學形成了聚類分析。

聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論

聚類法、聚類預報法等。

聚類分析計算方法主要有如下幾種:分裂法(partitioning methods):層次法(hierarchical

methods):基於密度的方法(density-based methods): 基於網格的方法(grid-based

methods): 基於模型的方法(model-based methods)。

② 未知分類數目的聚類方法有哪些

給定一個數組 --> @x 做聚類分析,現在不知道它能分成多少類,是要做 fuzzy C-means clustering么?如何在實現未知分類數目的聚類分析?-------------------------------------------------------------------------------------------------------我現在的數據都是正整數,如下:492, 500, 490, 486, 490, 491, 493, 480, 461, 504, 476, 434, 500, 470, 495, 3116, 3805, 3142, 12836, 12692, 3062, 3091, 3141, 3177, 3685, 3150, 3114, 3149, 12658, 3134, 3143, 3156, 3119, 3172, 3113, 12307, 12338, 3162, 2679, 3177, 3111, 3115, 3136, 3156, 12394, 3129, 3176, 3134, 3108, 12657, 506, 473, 495, 494, 434, 459, 445, 475, 476, 3146, 2009, 3132, 3155, 2704, 3125, 3170, 3187具體分類的話,我查到了這個: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/cmeans.html 使得Jm 最小。-------------------------------------------------------------------------------------------------------然後是詳細的對所面臨的數據的手工分類過程: 理論上數據可以分成1類,或者2類,這個在每行數據里是不固定的。即某些行可以分成一類,有些行可以分成兩類,但是哪些行分成1類那些行分成兩類不固定 但是,由於有實驗誤差的問題,有些數據需要拋棄,比如,如果一組數據是 23,24,25,332,334,336,2000; 那麼這個2000是實驗誤差,需要摒棄。一般來講這個誤差會是非常大的,比如這里是2000,或者更大,30000;同時誤差的個數不固定,有時候是一個2000,有時候是一個2000,一個30000。這里取決於這一行包含數據的個數。數據個數越多,其中包含錯誤的個數便越多。 如果讓我來手工分類,基本上就是按照上面的方式;首先確定是一個cluster或者是兩個clusters,然後再摒棄掉距離cluster距離非常遠的數字。 這里如果是一個cluster,則這個cluster附近的數字元合正態分布;如果是兩個cluster,那麼在這兩個cluster附近的數字分別符合正態分布

③ 聚類演算法有哪幾種

聚類分析計算方法主要有: 層次的方法(hierarchical method)、劃分方法(partitioning method)、基於密度的方法(density-based method)、基於網格的方法(grid-based method)、基於模型的方法(model-based method)等。其中,前兩種演算法是利用統計學定義的距離進行度量。

k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然 後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。

其流程如下:

(1)從 n個數據對象任意選擇 k 個對象作為初始聚類中心;

(2)根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;並根據最小距離重新對相應對象進行劃分;

(3)重新計算每個(有變化)聚類的均值(中心對象);

(4)循環(2)、(3)直到每個聚類不再發生變化為止(標准測量函數收斂)。

優點: 本演算法確定的K個劃分到達平方誤差最小。當聚類是密集的,且類與類之間區別明顯時,效果較好。對於處理大數據集,這個演算法是相對可伸縮和高效的,計算的復雜度為 O(NKt),其中N是數據對象的數目,t是迭代的次數。

缺點

1. K 是事先給定的,但非常難以選定;

2. 初始聚類中心的選擇對聚類結果有較大的影響。

④ 什麼是系統聚類分析系統聚類方法有幾種

1.k-mean聚類分析 適用於樣本聚類; 2.分層聚類 適用於對變數聚類; 3.兩步聚類 適用於分類變數和連續變數聚類; 4.基於密度的聚類演算法; 5.基於網路的聚類; 6.機器學習中的聚類演算法; 前3種,可用spss簡單操作實現;

⑤ 聚類演算法有哪幾種

聚類分析計算方法主要有: 層次的方法(hierarchical method)、劃分方法(partitioning method)、基於密度的方法(density-based method)、基於網格的方法(grid-based method)、基於模型的方法(model-based method)等。其中,前兩種演算法是利用統計學定義的距離進行度量。
k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然 後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。
其流程如下:
(1)從 n個數據對象任意選擇 k 個對象作為初始聚類中心;
(2)根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;並根據最小距離重新對相應對象進行劃分;
(3)重新計算每個(有變化)聚類的均值(中心對象);
(4)循環(2)、(3)直到每個聚類不再發生變化為止(標准測量函數收斂)。
優點: 本演算法確定的K個劃分到達平方誤差最小。當聚類是密集的,且類與類之間區別明顯時,效果較好。對於處理大數據集,這個演算法是相對可伸縮和高效的,計算的復雜度為 O(NKt),其中N是數據對象的數目,t是迭代的次數。
缺點:
1. K 是事先給定的,但非常難以選定;
2. 初始聚類中心的選擇對聚類結果有較大的影響。

⑥ 有哪些常用的聚類演算法

聚類分析計算方法主要有如下幾種:
1. 劃分法(partitioning methods)
給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。而且這K個分組滿足下列條件:(1) 每一個分組至少包含一個數據紀錄;(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);對於給定的K,演算法首先給出一個初始的分組方法,以後通過反復迭代的方法改變分組,使得每一次改進之後的分組方案都較前一次好,而所謂好的標准就是:同一分組中的記錄越近越好,而不同分組中的紀錄越遠越好。使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法;
2. 層次法(hierarchical methods)
這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。例如在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等;
3. 基於密度的方法(density-based methods)
基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。這個方法的指導思想就是,只要一個區域中的點的密度大過某個閥值,就把它加到與之相近的聚類中去。代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等;
4. 基於網格的方法(grid-based methods)
這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;
5. 基於模型的方法(model-based methods)
基於模型的方法給每一個聚類假定一個模型,然後去尋找能個很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。通常有兩種嘗試方向:統計的方案和神經網路的方案。

⑦ 聚類方法選擇

聚類結果的好壞取決於該聚類方法採用的相似性比較方法,選擇的聚類方法應能再現內在的分類組,且對一個數據組內的錯誤或異常值比較敏感。

系統聚類的相似性(類與類之間的距離)比較方法有許多種,例如最長距離法(兩類之間的距離用兩類間最遠樣本的距離來表示,它是空間擴張的)、最短距離法(兩類之間的距離以兩類間的最近樣本的距離來表示,它是空間壓縮的)、重心距離法(兩類間的距離以重心之間的距離表示,具有非單調性)、類平均法(兩類間的距離以各類元素兩兩之間的平均平方距離來表示,具有空間保持及單調性)和離差平方和法(兩類之間的平方距離用兩類歸類後所增加的離差平方和表示,聚類過程中使類內各指標的方差最小,類間的方差盡可能大,也具有單調性)等。

據研究,類平均法和離差平方和法能充分利用個樣本的信息,是類型合並和區劃中較好的方法,因而作為分區的主要方法。通過比較分析,本研究中採用離差平方和法。

⑧ 聚類演算法有哪些

聚類演算法有:劃分法、層次法、密度演算法、圖論聚類法、網格演算法、模型演算法。

1、劃分法

劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法。

2、層次法

層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等。

3、密度演算法

基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等。

4、圖論聚類法

圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。

5、網格演算法

基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法。

6、模型演算法

基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。通常有兩種嘗試方向:統計的方案和神經網路的方案。

(8)聚類方法有哪些擴展閱讀:

聚類分析起源於分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又將多元分析的技術引入到數值分類學形成了聚類分析。聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論聚類法、聚類預報法等。

在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。

⑨ 聚類分析方法有什麼好處

聚類分析:將個體(樣品)或者對象(變數)按相似程度(距離遠近)劃分類別,使得同一類中的元素之間的相似性比其他類的元素的相似性更強。目的在於使類間元素的同質性最大化和類與類間元素的異質性最大化。其主要依據是聚到同一個數據集中的樣本應該彼此相似,而屬於不同組的樣本應該足夠不相似。
常用聚類方法:系統聚類法,K-均值法,模糊聚類法,有序樣品的聚類,分解法,加入法。
注意事項:
1. 系統聚類法可對變數或者記錄進行分類,K-均值法只能對記錄進行分類;
2. K-均值法要求分析人員事先知道樣品分為多少類;
3. 對變數的多元正態性,方差齊性等要求較高。
應用領域:細分市場,消費行為劃分,設計抽樣方案等
優點:聚類分析模型的優點就是直觀,結論形式簡明。
缺點:在樣本量較大時,要獲得聚類結論有一定困難。由於相似系數是根據被試的反映來建立反映被試間內在聯系的指標,而實踐中有時盡管從被試反映所得出的數據中發現他們之間有緊密的關系,但事物之間卻無任何內在聯系,此時,如果根據距離或相似系數得出聚類分析的結果,顯然是不適當的,但是,聚類分析模型本身卻無法識別這類錯誤。

⑩ 常用聚類方法有哪些,並簡述其原理

加成聚合
縮合聚合

閱讀全文

與聚類方法有哪些相關的資料

熱點內容
痘印快速消除的方法 瀏覽:905
用白醋美白的正確方法 瀏覽:207
一樓樓頂漏水用什麼方法解決 瀏覽:711
快速切紅辣椒方法 瀏覽:702
格蘭仕微電腦壓力鍋頂蓋拆卸方法 瀏覽:446
豬腳鹵水製作方法視頻 瀏覽:979
養青斑魚的方法和技巧 瀏覽:919
訓練氣質的方法 瀏覽:851
脊柱損傷治療新方法和新葯物 瀏覽:507
串鉤主線與子線無結連接方法 瀏覽:82
取消電腦開機密碼的方法 瀏覽:916
樓地面工程施工方法有哪些 瀏覽:74
銅線安全計算方法 瀏覽:447
家庭地瓜種植方法 瀏覽:785
簡述繼電器工作狀態的檢測方法 瀏覽:377
吉利遠景皮帶異響解決方法 瀏覽:714
銷售品種多用什麼方法計算成本 瀏覽:585
洋蔥的種植技術和方法視頻播放 瀏覽:740
luna使用方法第一次 瀏覽:931
引火歸元的簡單方法 瀏覽:540